--- library_name: transformers pipeline_tag: text-generation tags: - glm4_moe - AWQ - FP16Mix - quantization fix - vLLM base_model: - zai-org/GLM-4.5-Air base_model_relation: quantized --- # GLM-4.5-Air-AWQ-FP16Mix Base model: [zai-org/GLM-4.5-Air](https://huggingface.co/zai-org/GLM-4.5-Air) ### 【vLLM Single Node with 8 GPUs Startup Command】 Note: You must use `--enable-expert-parallel` to start this model, otherwise the expert tensor TP will not divide evenly. This is required even for 2 GPUs. ``` CONTEXT_LENGTH=32768 vllm serve \ QuantTrio/GLM-4.5-Air-AWQ-FP16Mix \ --served-model-name GLM-4.5-Air-AWQ-FP16Mix \ --enable-expert-parallel \ --swap-space 16 \ --max-num-seqs 512 \ --max-model-len $CONTEXT_LENGTH \ --max-seq-len-to-capture $CONTEXT_LENGTH \ --gpu-memory-utilization 0.9 \ --tensor-parallel-size 8 \ --trust-remote-code \ --disable-log-requests \ --host 0.0.0.0 \ --port 8000 ``` ### 【Dependencies】 ``` vllm==0.10.0 ``` ### 【❗❗Temporary Patch for vllm==0.10.0❗❗】 The `awq_marlin` module in `vllm` misses checking the `modules_to_not_convert` parameter when loading AWQ-MoE modules, which causes mixed quantization of MoE to fail or report errors. Refer to: [[Issue #21888]](https://github.com/vllm-project/vllm/pull/21888) Before the PR is merged, temporarily replace `awq_marlin.py` in `vllm/model_executor/layers/quantization/awq_marlin.py`. ### 【Model Update Date】 ``` 2025-07-30 1. Initial commit ``` ### 【Model Files】 | File Size | Last Updated | |-----------|--------------| | `69GB` | `2025-07-30` | ### 【Model Download】 ```python from huggingface_hub import snapshot_download snapshot_download('QuantTrio/GLM-4.5-Air-AWQ-FP16Mix', cache_dir="your_local_path") ``` ### 【Overview】 # GLM-4.5

👋 Join our WeChat group .
📖 Read the GLM-4.5 technical blog .
📍 Access GLM-4.5 API via the ZhipuAI Open Platform .
👉 Try it online at GLM-4.5 .

## Model Introduction The **GLM-4.5** model series is a foundation model designed for agents. GLM-4.5 has **355 billion** total parameters, of which **32 billion** are active. GLM-4.5-Air adopts a more compact design with **106 billion** total parameters and **12 billion** active parameters. The GLM-4.5 models unify reasoning, encoding, and agent capabilities to meet the complex demands of agent applications. Both GLM-4.5 and GLM-4.5-Air are hybrid reasoning models that offer two modes: a *thinking mode* for complex reasoning and tool use, and a *non-thinking mode* for instant responses. We have open-sourced the base models, hybrid reasoning models, and FP8 versions of GLM-4.5 and GLM-4.5-Air. They are released under the MIT license and can be used for commercial purposes and secondary development. In our comprehensive evaluation across 12 industry-standard benchmarks, GLM-4.5 achieved an excellent score of **63.2**, ranking **3rd** among all proprietary and open-source models. Notably, GLM-4.5-Air maintained strong efficiency while achieving a competitive score of **59.8**. ![bench](https://raw.githubusercontent.com/zai-org/GLM-4.5/refs/heads/main/resources/bench.png) For more detailed evaluation results, demo cases, and technical information, please visit our [technical blog](https://z.ai/blog/glm-4.5). The full technical report will be released soon. Model code, tool parsers, and inference parsers can be found in the following implementations: - [transformers](https://github.com/huggingface/transformers/tree/main/src/transformers/models/glm4_moe) - [vLLM](https://github.com/vllm-project/vllm/blob/main/vllm/model_executor/models/glm4_moe_mtp.py) - [SGLang](https://github.com/sgl-project/sglang/blob/main/python/sglang/srt/models/glm4_moe.py) ## Quick Start Please refer to our [GitHub project](https://github.com/zai-org/GLM-4.5).