littlebird13 commited on
Commit
7e42a81
·
verified ·
1 Parent(s): fd4bf3b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +7 -2
README.md CHANGED
@@ -19,6 +19,8 @@ Qwen3 is the latest generation of large language models in Qwen series, offering
19
  - Number of Paramaters (Non-Embedding): 29.9B
20
  - Number of Layers: 48
21
  - Number of Attention Heads (GQA): 32 for Q and 4 for KV
 
 
22
  - Context Length: 32,768 natively and [131,072 tokens with YaRN](#processing-long-texts).
23
 
24
  For more details, including benchmark evaluation, hardware requirements, and inference performance, please refer to our [blog](https://qwenlm.github.io/blog/qwen3/), [GitHub](https://github.com/QwenLM/Qwen3), and [Documentation](https://qwen.readthedocs.io/en/latest/).
@@ -202,7 +204,6 @@ Qwen3 excels in tool calling capabilities. We recommend using [Qwen-Agent](https
202
 
203
  To define the available tools, you can use the MCP configuration file, use the integrated tool of Qwen-Agent, or integrate other tools by yourself.
204
  ```python
205
- import os
206
  from qwen_agent.agents import Assistant
207
 
208
  # Define LLM
@@ -232,6 +233,10 @@ tools = [
232
  'command': 'uvx',
233
  'args': ['mcp-server-time', '--local-timezone=Asia/Shanghai']
234
  },
 
 
 
 
235
  }
236
  },
237
  'code_interpreter', # Built-in tools
@@ -241,7 +246,7 @@ tools = [
241
  bot = Assistant(llm=llm_cfg, function_list=tools)
242
 
243
  # Streaming generation
244
- messages = [{'role': 'user', 'content': 'What time is it?'}]
245
  for responses in bot.run(messages=messages):
246
  pass
247
  print(responses)
 
19
  - Number of Paramaters (Non-Embedding): 29.9B
20
  - Number of Layers: 48
21
  - Number of Attention Heads (GQA): 32 for Q and 4 for KV
22
+ - Number of Experts: 128
23
+ - Number of Activated Experts: 8
24
  - Context Length: 32,768 natively and [131,072 tokens with YaRN](#processing-long-texts).
25
 
26
  For more details, including benchmark evaluation, hardware requirements, and inference performance, please refer to our [blog](https://qwenlm.github.io/blog/qwen3/), [GitHub](https://github.com/QwenLM/Qwen3), and [Documentation](https://qwen.readthedocs.io/en/latest/).
 
204
 
205
  To define the available tools, you can use the MCP configuration file, use the integrated tool of Qwen-Agent, or integrate other tools by yourself.
206
  ```python
 
207
  from qwen_agent.agents import Assistant
208
 
209
  # Define LLM
 
233
  'command': 'uvx',
234
  'args': ['mcp-server-time', '--local-timezone=Asia/Shanghai']
235
  },
236
+ "fetch": {
237
+ "command": "uvx",
238
+ "args": ["mcp-server-fetch"]
239
+ }
240
  }
241
  },
242
  'code_interpreter', # Built-in tools
 
246
  bot = Assistant(llm=llm_cfg, function_list=tools)
247
 
248
  # Streaming generation
249
+ messages = [{'role': 'user', 'content': 'https://qwenlm.github.io/blog/ Introduce the latest developments of Qwen'}]
250
  for responses in bot.run(messages=messages):
251
  pass
252
  print(responses)