File size: 16,316 Bytes
c935f2d
 
 
 
b22da49
 
 
 
 
c935f2d
99cabfa
 
 
 
 
 
 
 
68f00aa
99cabfa
52f1abe
99cabfa
 
 
68f00aa
99cabfa
 
 
 
 
 
 
 
 
 
a579a21
99cabfa
 
 
52f1abe
99cabfa
c935f2d
 
 
 
 
 
99cabfa
e692b5a
 
52f1abe
e692b5a
99cabfa
 
 
 
 
 
 
 
b22da49
 
 
 
7441690
b22da49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99cabfa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68f00aa
 
99cabfa
 
68f00aa
99cabfa
 
 
 
b22da49
 
 
 
 
 
 
99cabfa
 
 
 
 
 
 
 
b22da49
99cabfa
7441690
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99cabfa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7441690
 
 
 
 
99cabfa
c935f2d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
---
license: apache-2.0
base_model:
- Qwen/Qwen3-0.6B-Base
tags:
- transformers
- sentence-transformers
- sentence-similarity
- feature-extraction
---
# Qwen3-Embedding-0.6B

<p align="center">
    <img src="https://qianwen-res.oss-accelerate-overseas.aliyuncs.com/logo_qwen3.png" width="400"/>
<p>

## Highlights

The Qwen3 Embedding model series is the latest proprietary model of the Qwen family, specifically designed for text embedding and ranking tasks. Building upon the dense foundational models of the Qwen3 series, it provides a comprehensive range of text embeddings and reranking models in various sizes (0.6B, 4B, and 8B). This series inherits the exceptional multilingual capabilities, long-text understanding, and reasoning skills of its foundational model. The Qwen3 Embedding series represents significant advancements in multiple text embedding and ranking tasks, including text retrieval, code retrieval, text classification, text clustering, and bitext mining.

**Exceptional Versatility**: The embedding model has achieved state-of-the-art performance across a wide range of downstream application evaluations. The 8B size embedding model ranks **No.1** in the MTEB multilingual leaderboard (as of June 5, 2025, score **70.58**), while the reranking model excels in various text retrieval scenarios.

**Comprehensive Flexibility**: The Qwen3 Embedding series offers a full spectrum of sizes (from 0.6B to 8B) for both embedding and reranking models, catering to diverse use cases that prioritize efficiency and effectiveness. Developers can seamlessly combine these two modules. Additionally, the embedding model allows for flexible vector definitions across all dimensions, and both embedding and reranking models support user-defined instructions to enhance performance for specific tasks, languages, or scenarios.

**Multilingual Capability**: The Qwen3 Embedding series offer support for over 100 languages, thanks to the multilingual capabilites of Qwen3 models. This includes various programming languages, and provides robust multilingual, cross-lingual, and code retrieval capabilities.
## Model Overview

**Qwen3-Embedding-0.6B** has the following features:

- Model Type: Text Embedding
- Supported Languages: 100+ Languages
- Number of Paramaters: 0.6B
- Context Length: 32k
- Embedding Dimension: Up to 1024, supports user-defined output dimensions ranging from 32 to 1024

For more details, including benchmark evaluation, hardware requirements, and inference performance, please refer to our [blog](https://qwenlm.github.io/blog/qwen3-embedding/), [GitHub](https://github.com/QwenLM/Qwen3-Embedding).

## Qwen3 Embedding Series Model list

| Model Type       | Models               | Size | Layers | Sequence Length | Embedding Dimension | MRL Support | Instruction Aware |
|------------------|----------------------|------|--------|-----------------|---------------------|-------------|----------------|
| Text Embedding   | [Qwen3-Embedding-0.6B](https://huggingface.co/Qwen/Qwen3-Embedding-0.6B) | 0.6B | 28     | 32K             | 1024                | Yes         | Yes            |
| Text Embedding   | [Qwen3-Embedding-4B](https://huggingface.co/Qwen/Qwen3-Embedding-4B)   | 4B   | 36     | 32K             | 2560                | Yes         | Yes            |
| Text Embedding   | [Qwen3-Embedding-8B](https://huggingface.co/Qwen/Qwen3-Embedding-8B)   | 8B   | 36     | 32K             | 4096                | Yes         | Yes            |
| Text Reranking   | [Qwen3-Reranker-0.6B](https://huggingface.co/Qwen/Qwen3-Reranker-0.6B) | 0.6B | 28     | 32K             | -                   | -           | Yes            |
| Text Reranking   | [Qwen3-Reranker-4B](https://huggingface.co/Qwen/Qwen3-Reranker-4B)   | 4B   | 36     | 32K             | -                   | -           | Yes            |
| Text Reranking   | [Qwen3-Reranker-8B](https://huggingface.co/Qwen/Qwen3-Reranker-8B)   | 8B   | 36     | 32K             | -                   | -           | Yes            |

> **Note**:
> - `MRL Support` indicates whether the embedding model supports custom dimensions for the final embedding. 
> - `Instruction Aware` notes whether the embedding or reranking model supports customizing the input instruction according to different tasks.
> - Our evaluation indicates that, for most downstream tasks, using instructions (instruct) typically yields an improvement of 1% to 5% compared to not using them. Therefore, we recommend that developers create tailored instructions specific to their tasks and scenarios. In multilingual contexts, we also advise users to write their instructions in English, as most instructions utilized during the model training process were originally written in English.

## Usage

With Transformers versions earlier than 4.51.0, you may encounter the following error:
```
KeyError: 'qwen3'
```

### Sentence Transformers Usage

```python
# Requires transformers>=4.51.0
# Requires sentence-transformers>=2.7.0

from sentence_transformers import SentenceTransformer

# Load the model
model = SentenceTransformer("Qwen/Qwen3-Embedding-0.6B")

# We recommend enabling flash_attention_2 for better acceleration and memory saving,
# together with setting `padding_side` to "left":
# model = SentenceTransformer(
#     "Qwen/Qwen3-Embedding-0.6B",
#     model_kwargs={"attn_implementation": "flash_attention_2", "device_map": "auto"},
#     tokenizer_kwargs={"padding_side": "left"},
# )

# The queries and documents to embed
queries = [
    "What is the capital of China?",
    "Explain gravity",
]
documents = [
    "The capital of China is Beijing.",
    "Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]

# Encode the queries and documents. Note that queries benefit from using a prompt
# Here we use the prompt called "query" stored under `model.prompts`, but you can
# also pass your own prompt via the `prompt` argument
query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

# Compute the (cosine) similarity between the query and document embeddings
similarity = model.similarity(query_embeddings, document_embeddings)
print(similarity)
# tensor([[0.7646, 0.1414],
#         [0.1355, 0.6000]])
```

### Transformers Usage

```python
# Requires transformers>=4.51.0

import torch
import torch.nn.functional as F

from torch import Tensor
from transformers import AutoTokenizer, AutoModel


def last_token_pool(last_hidden_states: Tensor,
                 attention_mask: Tensor) -> Tensor:
    left_padding = (attention_mask[:, -1].sum() == attention_mask.shape[0])
    if left_padding:
        return last_hidden_states[:, -1]
    else:
        sequence_lengths = attention_mask.sum(dim=1) - 1
        batch_size = last_hidden_states.shape[0]
        return last_hidden_states[torch.arange(batch_size, device=last_hidden_states.device), sequence_lengths]


def get_detailed_instruct(task_description: str, query: str) -> str:
    return f'Instruct: {task_description}\nQuery:{query}'

# Each query must come with a one-sentence instruction that describes the task
task = 'Given a web search query, retrieve relevant passages that answer the query'

queries = [
    get_detailed_instruct(task, 'What is the capital of China?'),
    get_detailed_instruct(task, 'Explain gravity')
]
# No need to add instruction for retrieval documents
documents = [
    "The capital of China is Beijing.",
    "Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun."
]
input_texts = queries + documents

tokenizer = AutoTokenizer.from_pretrained('Qwen/Qwen3-Embedding-0.6B', padding_side='left')
model = AutoModel.from_pretrained('Qwen/Qwen3-Embedding-0.6B')

# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModel.from_pretrained('Qwen/Qwen3-Embedding-0.6B', attn_implementation="flash_attention_2", torch_dtype=torch.float16).cuda()

max_length = 8192

# Tokenize the input texts
batch_dict = tokenizer(
    input_texts,
    padding=True,
    truncation=True,
    max_length=max_length,
    return_tensors="pt",
)
batch_dict.to(model.device)
outputs = model(**batch_dict)
embeddings = last_token_pool(outputs.last_hidden_state, batch_dict['attention_mask'])

# normalize embeddings
embeddings = F.normalize(embeddings, p=2, dim=1)
scores = (embeddings[:2] @ embeddings[2:].T)
print(scores.tolist())
# [[0.7645568251609802, 0.14142508804798126], [0.13549736142158508, 0.5999549627304077]]
```

### vLLM Usage

```python
# Requires vllm>=0.8.5
import torch
import vllm
from vllm import LLM

def get_detailed_instruct(task_description: str, query: str) -> str:
    return f'Instruct: {task_description}\nQuery:{query}'

# Each query must come with a one-sentence instruction that describes the task
task = 'Given a web search query, retrieve relevant passages that answer the query'

queries = [
    get_detailed_instruct(task, 'What is the capital of China?'),
    get_detailed_instruct(task, 'Explain gravity')
]
# No need to add instruction for retrieval documents
documents = [
    "The capital of China is Beijing.",
    "Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun."
]
input_texts = queries + documents

model = LLM(model="Qwen/Qwen3-Embedding-0.6B", task="embed")

outputs = model.embed(input_texts)
embeddings = torch.tensor([o.outputs.embedding for o in outputs])
scores = (embeddings[:2] @ embeddings[2:].T)
print(scores.tolist())
# [[0.7620252966880798, 0.14078938961029053], [0.1358368694782257, 0.6013815999031067]]
```

📌 **Tip**: We recommend that developers customize the `instruct` according to their specific scenarios, tasks, and languages. Our tests have shown that in most retrieval scenarios, not using an `instruct` on the query side can lead to a drop in retrieval performance by approximately 1% to 5%.

## Evaluation

### MTEB (Multilingual)

| Model                            |  Size   |  Mean (Task)  | Mean (Type) | Bitxt Mining | Class. | Clust. | Inst. Retri. | Multi. Class. | Pair. Class. | Rerank | Retri. | STS  |
|----------------------------------|:-------:|:-------------:|:-------------:|:--------------:|:--------:|:--------:|:--------------:|:---------------:|:--------------:|:--------:|:--------:|:------:|
| NV-Embed-v2                      |   7B    |     56.29     | 49.58       | 57.84        | 57.29  | 40.80  | 1.04         | 18.63         | 78.94        | 63.82  | 56.72  | 71.10|
| GritLM-7B                        |   7B    |     60.92     | 53.74       | 70.53        | 61.83  | 49.75  | 3.45         | 22.77         | 79.94        | 63.78  | 58.31  | 73.33|
| BGE-M3                           |  0.6B   |     59.56     | 52.18       | 79.11        | 60.35  | 40.88  | -3.11        | 20.1          | 80.76        | 62.79  | 54.60  | 74.12|
| multilingual-e5-large-instruct   |  0.6B   |     63.22     | 55.08       | 80.13        | 64.94  | 50.75  | -0.40        | 22.91         | 80.86        | 62.61  | 57.12  | 76.81|
| gte-Qwen2-1.5B-instruct          |  1.5B   |     59.45     | 52.69       | 62.51        | 58.32  | 52.05  | 0.74         | 24.02         | 81.58        | 62.58  | 60.78  | 71.61|
| gte-Qwen2-7b-Instruct            |   7B    |     62.51     | 55.93       | 73.92        | 61.55  | 52.77  | 4.94         | 25.48         | 85.13        | 65.55  | 60.08  | 73.98|
| text-embedding-3-large           |    -    |     58.93     | 51.41       | 62.17        | 60.27  | 46.89  | -2.68        | 22.03         | 79.17        | 63.89  | 59.27  | 71.68|
| Cohere-embed-multilingual-v3.0   |    -    |     61.12     | 53.23       | 70.50        | 62.95  | 46.89  | -1.89        | 22.74         | 79.88        | 64.07  | 59.16  | 74.80|
| Gemini Embedding                 |    -    |     68.37     | 59.59       | 79.28        | 71.82  | 54.59  | 5.18         | **29.16**     | 83.63        | 65.58  | 67.71  | 79.40|
| **Qwen3-Embedding-0.6B**         |  0.6B   |     64.33     | 56.00       | 72.22        | 66.83  | 52.33  | 5.09         | 24.59         | 80.83        | 61.41  | 64.64  | 76.17|
| **Qwen3-Embedding-4B**           |   4B    |     69.45     | 60.86       | 79.36        | 72.33  | 57.15  | **11.56**    | 26.77         | 85.05        | 65.08  | 69.60  | 80.86|
| **Qwen3-Embedding-8B**           |   8B    |   **70.58**   | **61.69**   | **80.89**    | **74.00** | **57.65** | 10.06      | 28.66         | **86.40**    | **65.63** | **70.88** | **81.08** |

> **Note**: For compared models, the scores are retrieved from MTEB online [leaderboard](https://huggingface.co/spaces/mteb/leaderboard) on May 24th, 2025.

### MTEB (Eng v2)

| MTEB English / Models          |  Param.  | Mean(Task) | Mean(Type) | Class. | Clust. | Pair Class. | Rerank. | Retri. | STS   | Summ. |
|--------------------------------|:--------:|:------------:|:------------:|:--------:|:--------:|:-------------:|:---------:|:--------:|:-------:|:-------:|
| multilingual-e5-large-instruct |   0.6B   | 65.53      | 61.21      | 75.54  | 49.89  | 86.24       | 48.74   | 53.47  | 84.72 | 29.89 |
| NV-Embed-v2                    |   7.8B   | 69.81      | 65.00      | 87.19  | 47.66  | 88.69       | 49.61   | 62.84  | 83.82 | 35.21 |
| GritLM-7B                      |   7.2B   | 67.07      | 63.22      | 81.25  | 50.82  | 87.29       | 49.59   | 54.95  | 83.03 | 35.65 |
| gte-Qwen2-1.5B-instruct        |   1.5B   | 67.20      | 63.26      | 85.84  | 53.54  | 87.52       | 49.25   | 50.25  | 82.51 | 33.94 |
| stella_en_1.5B_v5              |   1.5B   | 69.43      | 65.32      | 89.38  | 57.06  | 88.02       | 50.19   | 52.42  | 83.27 | 36.91 |
| gte-Qwen2-7B-instruct          |   7.6B   | 70.72      | 65.77      | 88.52  | 58.97  | 85.9        | 50.47   | 58.09  | 82.69 | 35.74 |
| gemini-embedding-exp-03-07     |    -     | 73.3       | 67.67      | 90.05  | 59.39  | 87.7        | 48.59   | 64.35  | 85.29 | 38.28 |
| **Qwen3-Embedding-0.6B**       |   0.6B   | 70.70      | 64.88      | 85.76  | 54.05  | 84.37       | 48.18   | 61.83  | 86.57 | 33.43 |
| **Qwen3-Embedding-4B**         |    4B    | 74.60      | 68.10      | 89.84  | 57.51  | 87.01       | 50.76   | 68.46  | 88.72 | 34.39 |
| **Qwen3-Embedding-8B**         |    8B    | 75.22      | 68.71      | 90.43  | 58.57  | 87.52       | 51.56   | 69.44  | 88.58 | 34.83 |

### C-MTEB (MTEB Chinese)

| C-MTEB           | Param. | Mean(Task) | Mean(Type) | Class. | Clust. | Pair Class. | Rerank. | Retr. | STS   |
|------------------|--------|------------|------------|--------|--------|-------------|---------|-------|-------|
| multilingual-e5-large-instruct | 0.6B   | 58.08      | 58.24      | 69.80  | 48.23  | 64.52       | 57.45   | 63.65 | 45.81 |
| bge-multilingual-gemma2 | 9B     | 67.64      | 75.31      | 59.30  | 86.67  | 68.28       | 73.73   | 55.19 | -     |
| gte-Qwen2-1.5B-instruct  | 1.5B   | 67.12      | 67.79      | 72.53  | 54.61  | 79.5        | 68.21   | 71.86 | 60.05 |
| gte-Qwen2-7B-instruct    | 7.6B   | 71.62      | 72.19      | 75.77  | 66.06  | 81.16       | 69.24   | 75.70 | 65.20 |
| ritrieve_zh_v1          | 0.3B   | 72.71      | 73.85      | 76.88  | 66.5   | 85.98       | 72.86   | 76.97 | 63.92 |
| **Qwen3-Embedding-0.6B** | 0.6B   | 66.33      | 67.45      | 71.40  | 68.74  | 76.42       | 62.58   | 71.03 | 54.52 |
| **Qwen3-Embedding-4B**   | 4B     | 72.27      | 73.51      | 75.46  | 77.89  | 83.34       | 66.05   | 77.03 | 61.26 |
| **Qwen3-Embedding-8B**   | 8B     | 73.84      | 75.00      | 76.97  | 80.08  | 84.23       | 66.99   | 78.21 | 63.53 |


## Citation

If you find our work helpful, feel free to give us a cite.

```
@article{qwen3embedding,
  title={Qwen3 Embedding: Advancing Text Embedding and Reranking Through Foundation Models},
  author={Zhang, Yanzhao and Li, Mingxin and Long, Dingkun and Zhang, Xin and Lin, Huan and Yang, Baosong and Xie, Pengjun and Yang, An and Liu, Dayiheng and Lin, Junyang and Huang, Fei and Zhou, Jingren},
  journal={arXiv preprint arXiv:2506.05176},
  year={2025}
}
```