littlebird13 commited on
Commit
d74263f
·
verified ·
1 Parent(s): 41675d7

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md CHANGED
@@ -1,3 +1,181 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Qwen3-Embedding-8B
2
+
3
+ <p align="center">
4
+ <img src="https://qianwen-res.oss-accelerate-overseas.aliyuncs.com/logo_qwen3.png" width="400"/>
5
+ <p>
6
+
7
+ ## Highlights
8
+
9
+ The Qwen3 Embedding series model is the latest proprietary model of the Qwen family, specifically designed for text embedding and ranking tasks. Building upon the dense foundational models of the Qwen3 series, it provides a comprehensive range of text embeddings and reranking models in various sizes (0.6B, 4B, and 8B). This series inherits the exceptional multilingual capabilities, long-text understanding, and reasoning skills of its foundational model. The Qwen3 Embedding series represents significant advancements in multiple text embedding and ranking tasks, including text retrieval, code retrieval, text classification, text clustering, and bitext mining.
10
+
11
+ **Exceptional Versatility**: The embedding model has achieved state-of-the-art performance across a wide range of downstream application evaluations. The 8B size embedding model ranks **No.1** in the MTEB multilingual leaderboard (as of May 26, 2025, score **70.58**), while the reranking model excels in various text retrieval scenarios.
12
+
13
+ **Comprehensive Flexibility**: The Qwen3 Embedding series offers a full spectrum of sizes (from 0.6B to 8B) for both embedding and reranking models, catering to diverse use cases that prioritize efficiency and effectiveness. Developers can seamlessly combine these two modules. Additionally, the embedding model allows for flexible vector definitions across all dimensions, and both embedding and reranking models support user-defined instructions to enhance performance for specific tasks, languages, or scenarios.
14
+
15
+ **Multilingual Capability**: The Qwen3 Embedding series support over 100 languages, including various programming languages, and provides robust multilingual, cross-lingual, and code retrieval capabilities.
16
+
17
+ ## Model Overview
18
+
19
+ **Qwen3-Embedding-8B** has the following features:
20
+
21
+ - Model Type: Text Embedding
22
+ - Supported Languages: 100+ Languages
23
+ - Number of Paramaters: 8B
24
+ - Context Length: 32k
25
+ - Embedding Dimension: Up to 4096, supports user-defined output dimensions ranging from 32 to 4096
26
+
27
+ For more details, including benchmark evaluation, hardware requirements, and inference performance, please refer to our [blog](https://qwenlm.github.io/blog/qwen3-Embedding/), [GitHub](https://github.com/QwenLM/Qwen3-Embedding).
28
+
29
+ ## Qwen3 Embedding Series Model list
30
+
31
+ | Model Type | Models | Size | Layers | Sequence Length | Embedding Dimension | MRL Support | Instruct Aware |
32
+ |------------------|----------------------|------|--------|-----------------|---------------------|-------------|----------------|
33
+ | Text Embedding | [Qwen3-Embedding-0.6B](https://modelscope.cn/models/tongyi/Qwen3-Embedding-0.6B) | 0.6B | 28 | 32K | 1024 | Yes | Yes |
34
+ | Text Embedding | [Qwen3-Embedding-4B](https://modelscope.cn/models/tongyi/Qwen3-Embedding-4B) | 4B | 36 | 32K | 2560 | Yes | Yes |
35
+ | Text Embedding | [Qwen3-Embedding-8B](https://modelscope.cn/models/tongyi/Qwen3-Embedding-8B) | 8B | 36 | 32K | 4096 | Yes | Yes |
36
+ | Text Reranking | [Qwen3-Reranker-0.6B](https://modelscope.cn/models/tongyi/Qwen3-Reranker-0.6B) | 0.6B | 28 | 32K | - | - | Yes |
37
+ | Text Reranking | [Qwen3-Reranker-4B](https://modelscope.cn/models/tongyi/Qwen3-Reranker-4B) | 4B | 36 | 32K | - | - | Yes |
38
+ | Text Reranking | [Qwen3-Reranker-8B](https://modelscope.cn/models/tongyi/Qwen3-Reranker-8B) | 8B | 36 | 32K | - | - | Yes |
39
+
40
+ > **Note**:: `MRL Support` indicates whether the embedding model supports custom dimensions for the final embedding. `Instruct Aware` notes whether the embedding or reranking model supports customizing the input instruction according to different tasks.
41
+
42
+ ## Usage
43
+
44
+ With Transformers versions earlier than 4.51.0, you may encounter the following error:
45
+ ```
46
+ KeyError: 'qwen3'
47
+ ```
48
+
49
+ ### Transformers Usage
50
+
51
+ ```python
52
+ # Requires transformers>=4.51.0
53
+
54
+ import torch
55
+ import torch.nn.functional as F
56
+
57
+ from torch import Tensor
58
+ from modelscope import AutoTokenizer, AutoModel
59
+
60
+
61
+ def last_token_pool(last_hidden_states: Tensor,
62
+ attention_mask: Tensor) -> Tensor:
63
+ left_padding = (attention_mask[:, -1].sum() == attention_mask.shape[0])
64
+ if left_padding:
65
+ return last_hidden_states[:, -1]
66
+ else:
67
+ sequence_lengths = attention_mask.sum(dim=1) - 1
68
+ batch_size = last_hidden_states.shape[0]
69
+ return last_hidden_states[torch.arange(batch_size, device=last_hidden_states.device), sequence_lengths]
70
+
71
+
72
+ def get_detailed_instruct(task_description: str, query: str) -> str:
73
+ return f'Instruct: {task_description}\nQuery:{query}'
74
+
75
+ def tokenize(tokenizer, input_texts, eod_id, max_length):
76
+ batch_dict = tokenizer(input_texts, padding=False, truncation=True, max_length=max_length-2)
77
+ for seq, att in zip(batch_dict["input_ids"], batch_dict["attention_mask"]):
78
+ seq.append(eod_id)
79
+ att.append(1)
80
+ batch_dict = tokenizer.pad(batch_dict, padding=True, return_tensors="pt")
81
+ return batch_dict
82
+
83
+ # Each query must come with a one-sentence instruction that describes the task
84
+ task = 'Given a web search query, retrieve relevant passages that answer the query'
85
+
86
+ queries = [
87
+ get_detailed_instruct(task, 'What is the capital of China?'),
88
+ get_detailed_instruct(task, 'Explain gravity')
89
+ ]
90
+ # No need to add instruction for retrieval documents
91
+ documents = [
92
+ "The capital of China is Beijing.",
93
+ "Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun."
94
+ ]
95
+ input_texts = queries + documents
96
+
97
+ tokenizer = AutoTokenizer.from_pretrained('tongyi/Qwen3-Embedding-8B', padding_side='left')
98
+ model = AutoModel.from_pretrained('tongyi/Qwen3-Embedding-8B')
99
+
100
+ # We recommend enabling flash_attention_2 for better acceleration and memory saving.
101
+ # model = AutoModel.from_pretrained('tongyi/Qwen3-Embedding-8B', attn_implementation="flash_attention_2", torch_dtype=torch.float16).cuda()
102
+
103
+ eod_id = tokenizer.convert_tokens_to_ids("<|endoftext|>")
104
+ max_length = 8192
105
+
106
+ # Tokenize the input texts
107
+ batch_dict = tokenize(tokenizer, input_texts, eod_id, max_length)
108
+ batch_dict.to(model.device)
109
+ outputs = model(**batch_dict)
110
+ embeddings = last_token_pool(outputs.last_hidden_state, batch_dict['attention_mask'])
111
+
112
+ # normalize embeddings
113
+ embeddings = F.normalize(embeddings, p=2, dim=1)
114
+ scores = (embeddings[:2] @ embeddings[2:].T)
115
+ print(scores.tolist())
116
+ ```
117
+ 📌 **Tip**: We recommend that developers customize the `instruct` according to their specific scenarios, tasks, and languages. Our tests have shown that in most retrieval scenarios, not using an `instruct` on the query side can lead to a drop in retrieval performance by approximately 1% to 5%.
118
+
119
+ ## Evaluation
120
+
121
+ ### MTEB (Multilingual)
122
+
123
+ | Model | Size | Mean (Task) | Mean (Type) | Bitxt Mining | Class. | Clust. | Inst. Retri. | Multi. Class. | Pair. Class. | Rerank | Retri. | STS |
124
+ |----------------------------------|:-------:|:-------------:|:-------------:|:--------------:|:--------:|:--------:|:--------------:|:---------------:|:--------------:|:--------:|:--------:|:------:|
125
+ | NV-Embed-v2 | 7B | 56.29 | 49.58 | 57.84 | 57.29 | 40.80 | 1.04 | 18.63 | 78.94 | 63.82 | 56.72 | 71.10|
126
+ | GritLM-7B | 7B | 60.92 | 53.74 | 70.53 | 61.83 | 49.75 | 3.45 | 22.77 | 79.94 | 63.78 | 58.31 | 73.33|
127
+ | BGE-M3 | 0.6B | 59.56 | 52.18 | 79.11 | 60.35 | 40.88 | -3.11 | 20.1 | 80.76 | 62.79 | 54.60 | 74.12|
128
+ | multilingual-e5-large-instruct | 0.6B | 63.22 | 55.08 | 80.13 | 64.94 | 50.75 | -0.40 | 22.91 | 80.86 | 62.61 | 57.12 | 76.81|
129
+ | gte-Qwen2-1.5B-instruct | 1.5B | 59.45 | 52.69 | 62.51 | 58.32 | 52.05 | 0.74 | 24.02 | 81.58 | 62.58 | 60.78 | 71.61|
130
+ | gte-Qwen2-7b-Instruct | 7B | 62.51 | 55.93 | 73.92 | 61.55 | 52.77 | 4.94 | 25.48 | 85.13 | 65.55 | 60.08 | 73.98|
131
+ | text-embedding-3-large | - | 58.93 | 51.41 | 62.17 | 60.27 | 46.89 | -2.68 | 22.03 | 79.17 | 63.89 | 59.27 | 71.68|
132
+ | Cohere-embed-multilingual-v3.0 | - | 61.12 | 53.23 | 70.50 | 62.95 | 46.89 | -1.89 | 22.74 | 79.88 | 64.07 | 59.16 | 74.80|
133
+ | gemini-embedding-exp-03-07 | - | 68.37 | 59.59 | 79.28 | 71.82 | 54.59 | 5.18 | **29.16** | 83.63 | 65.58 | 67.71 | 79.40|
134
+ | **Qwen3-Embedding-0.6B** | 0.6B | 64.33 | 56.00 | 72.22 | 66.83 | 52.33 | 5.09 | 24.59 | 80.83 | 61.41 | 64.64 | 76.17|
135
+ | **Qwen3-Embedding-4B** | 4B | 69.45 | 60.86 | 79.36 | 72.33 | 57.15 | **11.56** | 26.77 | 85.05 | 65.08 | 69.60 | 80.86|
136
+ | **Qwen3-Embedding-8B** | 8B | **70.58** | **61.69** | **80.89** | **74.00** | **57.65** | 10.06 | 28.66 | **86.40** | **65.63** | **70.88** | **81.08** |
137
+
138
+ > **Note**: For compared models, the scores are retrieved from MTEB online [leaderboard](https://huggingface.co/spaces/mteb/leaderboard) on May 24th, 2025.
139
+
140
+ ### MTEB (Eng v2)
141
+
142
+ | MTEB English / Models | Param. | Mean(Task) | Mean(Type) | Class. | Clust. | Pair Class. | Rerank. | Retri. | STS | Summ. |
143
+ |--------------------------------|:--------:|:------------:|:------------:|:--------:|:--------:|:-------------:|:---------:|:--------:|:-------:|:-------:|
144
+ | multilingual-e5-large-instruct | 0.6B | 65.53 | 61.21 | 75.54 | 49.89 | 86.24 | 48.74 | 53.47 | 84.72 | 29.89 |
145
+ | NV-Embed-v2 | 7.8B | 69.81 | 65.00 | 87.19 | 47.66 | 88.69 | 49.61 | 62.84 | 83.82 | 35.21 |
146
+ | GritLM-7B | 7.2B | 67.07 | 63.22 | 81.25 | 50.82 | 87.29 | 49.59 | 54.95 | 83.03 | 35.65 |
147
+ | gte-Qwen2-1.5B-instruct | 1.5B | 67.20 | 63.26 | 85.84 | 53.54 | 87.52 | 49.25 | 50.25 | 82.51 | 33.94 |
148
+ | stella_en_1.5B_v5 | 1.5B | 69.43 | 65.32 | 89.38 | 57.06 | 88.02 | 50.19 | 52.42 | 83.27 | 36.91 |
149
+ | gte-Qwen2-7B-instruct | 7.6B | 70.72 | 65.77 | 88.52 | 58.97 | 85.9 | 50.47 | 58.09 | 82.69 | 35.74 |
150
+ | gemini-embedding-exp-03-07 | - | 73.3 | 67.67 | 90.05 | **59.39** | **87.7** | 48.59 | 64.35 | 85.29 | **38.28** |
151
+ | **Qwen3-Embedding-0.6B** | 0.6B | 70.70 | 64.88 | 85.76 | 54.05 | 84.37 | 48.18 | 61.83 | 86.57 | 33.43 |
152
+ | **Qwen3-Embedding-4B** | 4B | 74.60 | 68.10 | 89.84 | 57.51 | 87.01 | 50.76 | 68.46 | **88.72** | 34.39 |
153
+ | **Qwen3-Embedding-8B** | 8B | **75.22** | **68.71** | **90.43** | 58.57 | 87.52 | **51.56** | **69.44** | 88.58 | 34.83 |
154
+
155
+ ### C-MTEB (MTEB Chinese)
156
+
157
+ | C-MTEB | Param. | Mean(Task) | Mean(Type) | Class. | Clust. | Pair Class. | Rerank. | Retr. | STS |
158
+ |------------------|--------|------------|------------|--------|--------|-------------|---------|-------|-------|
159
+ | multilingual-e5-large-instruct | 0.6B | 58.08 | 58.24 | 69.80 | 48.23 | 64.52 | 57.45 | 63.65 | 45.81 |
160
+ | bge-multilingual-gemma2 | 9B | 67.64 |68.52 | 75.31 | 59.30 | 86.67 | 68.28 | 73.73 | 55.19 |
161
+ | gte-Qwen2-1.5B-instruct | 1.5B | 67.12 | 67.79 | 72.53 | 54.61 | 79.5 | 68.21 | 71.86 | 60.05 |
162
+ | gte-Qwen2-7B-instruct | 7.6B | 71.62 | 72.19 | 75.77 | 66.06 | 81.16 | 69.24 | 75.70 | 65.20 |
163
+ | ritrieve_zh_v1 | 0.3B | 72.71 | 73.85 | 76.88 | 66.5 | **85.98** | **72.86** | 76.97 | **63.92** |
164
+ | **Qwen3-Embedding-0.6B** | 0.6B | 66.33 | 67.45 | 71.40 | 68.74 | 76.42 | 62.58 | 71.03 | 54.52 |
165
+ | **Qwen3-Embedding-4B** | 4B | 72.27 | 73.51 | 75.46 | 77.89 | 83.34 | 66.05 | 77.03 | 61.26 |
166
+ | **Qwen3-Embedding-8B** | 8B | **73.84** | **75.00** | **76.97** | **80.08** | 84.23 | 66.99 | **78.21** | 63.53 |
167
+
168
+
169
+ ## Citation
170
+
171
+ If you find our work helpful, feel free to give us a cite.
172
+
173
+ ```
174
+ @misc{qwen3-embedding,
175
+ title = {Qwen3-Embedding},
176
+ url = {https://qwenlm.github.io/blog/qwen3/},
177
+ author = {Qwen Team},
178
+ month = {May},
179
+ year = {2025}
180
+ }
181
+ ```
added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
config.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "Qwen3Model"
4
+ ],
5
+ "attention_bias": false,
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151643,
8
+ "eos_token_id": 151645,
9
+ "head_dim": 128,
10
+ "hidden_act": "silu",
11
+ "hidden_size": 4096,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 12288,
14
+ "max_position_embeddings": 40960,
15
+ "max_window_layers": 36,
16
+ "model_type": "qwen3",
17
+ "num_attention_heads": 32,
18
+ "num_hidden_layers": 36,
19
+ "num_key_value_heads": 8,
20
+ "rms_norm_eps": 1e-06,
21
+ "rope_scaling": null,
22
+ "rope_theta": 1000000,
23
+ "sliding_window": null,
24
+ "tie_word_embeddings": false,
25
+ "torch_dtype": "bfloat16",
26
+ "transformers_version": "4.51.2",
27
+ "use_cache": true,
28
+ "use_sliding_window": false,
29
+ "vocab_size": 151665
30
+ }
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "eos_token_id": 151643,
4
+ "max_new_tokens": 2048,
5
+ "transformers_version": "4.51.3"
6
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:99b343597fe840706146144699a8b9188dd3387e43eb61faf0231b70b249d451
3
+ size 4900037024
model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dff635b0f6dbbaad2a2d633ef037ec0a39bc165cc1806c712fbd6fcbcb4526c0
3
+ size 4915959512
model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:30b1d4c53d84eb018f642cad7b373f0aabf79699872d8702c1f38577c0a59a2f
3
+ size 4983067656
model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:36cbc9c60375693629f25743c1e77ebb1724af58e671b2376463193c7fd21ef6
3
+ size 335570376
model.safetensors.index.json ADDED
@@ -0,0 +1,405 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 15134590976
4
+ },
5
+ "weight_map": {
6
+ "embed_tokens.weight": "model-00001-of-00004.safetensors",
7
+ "layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
8
+ "layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
9
+ "layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
10
+ "layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
11
+ "layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
12
+ "layers.0.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
13
+ "layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
14
+ "layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
15
+ "layers.0.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
16
+ "layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
17
+ "layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
18
+ "layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
19
+ "layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
20
+ "layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
21
+ "layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
22
+ "layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
23
+ "layers.1.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
24
+ "layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
25
+ "layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
26
+ "layers.1.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
27
+ "layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
28
+ "layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
29
+ "layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
30
+ "layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
31
+ "layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
32
+ "layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
33
+ "layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
34
+ "layers.10.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
35
+ "layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
36
+ "layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
37
+ "layers.10.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
38
+ "layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
39
+ "layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
40
+ "layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
41
+ "layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
42
+ "layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
43
+ "layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
44
+ "layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
45
+ "layers.11.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
46
+ "layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
47
+ "layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
48
+ "layers.11.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
49
+ "layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
50
+ "layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
51
+ "layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
52
+ "layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
53
+ "layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
54
+ "layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
55
+ "layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
56
+ "layers.12.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
57
+ "layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
58
+ "layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
59
+ "layers.12.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
60
+ "layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
61
+ "layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
62
+ "layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
63
+ "layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
64
+ "layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
65
+ "layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
66
+ "layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
67
+ "layers.13.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
68
+ "layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
69
+ "layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
70
+ "layers.13.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
71
+ "layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
72
+ "layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
73
+ "layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
74
+ "layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
75
+ "layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
76
+ "layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
77
+ "layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
78
+ "layers.14.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
79
+ "layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
80
+ "layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
81
+ "layers.14.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
82
+ "layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
83
+ "layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
84
+ "layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
85
+ "layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
86
+ "layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
87
+ "layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
88
+ "layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
89
+ "layers.15.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
90
+ "layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
91
+ "layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
92
+ "layers.15.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
93
+ "layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
94
+ "layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
95
+ "layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
96
+ "layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
97
+ "layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
98
+ "layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
99
+ "layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
100
+ "layers.16.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
101
+ "layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
102
+ "layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
103
+ "layers.16.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
104
+ "layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
105
+ "layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
106
+ "layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
107
+ "layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
108
+ "layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
109
+ "layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
110
+ "layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
111
+ "layers.17.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
112
+ "layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
113
+ "layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
114
+ "layers.17.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
115
+ "layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
116
+ "layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
117
+ "layers.18.input_layernorm.weight": "model-00002-of-00004.safetensors",
118
+ "layers.18.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
119
+ "layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
120
+ "layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
121
+ "layers.18.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
122
+ "layers.18.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
123
+ "layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
124
+ "layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
125
+ "layers.18.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
126
+ "layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
127
+ "layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
128
+ "layers.19.input_layernorm.weight": "model-00002-of-00004.safetensors",
129
+ "layers.19.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
130
+ "layers.19.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
131
+ "layers.19.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
132
+ "layers.19.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
133
+ "layers.19.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
134
+ "layers.19.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
135
+ "layers.19.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
136
+ "layers.19.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
137
+ "layers.19.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
138
+ "layers.19.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
139
+ "layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
140
+ "layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
141
+ "layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
142
+ "layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
143
+ "layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
144
+ "layers.2.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
145
+ "layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
146
+ "layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
147
+ "layers.2.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
148
+ "layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
149
+ "layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
150
+ "layers.20.input_layernorm.weight": "model-00002-of-00004.safetensors",
151
+ "layers.20.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
152
+ "layers.20.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
153
+ "layers.20.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
154
+ "layers.20.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
155
+ "layers.20.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
156
+ "layers.20.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
157
+ "layers.20.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
158
+ "layers.20.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
159
+ "layers.20.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
160
+ "layers.20.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
161
+ "layers.21.input_layernorm.weight": "model-00002-of-00004.safetensors",
162
+ "layers.21.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
163
+ "layers.21.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
164
+ "layers.21.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
165
+ "layers.21.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
166
+ "layers.21.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
167
+ "layers.21.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
168
+ "layers.21.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
169
+ "layers.21.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
170
+ "layers.21.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
171
+ "layers.21.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
172
+ "layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
173
+ "layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
174
+ "layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
175
+ "layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
176
+ "layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
177
+ "layers.22.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
178
+ "layers.22.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
179
+ "layers.22.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
180
+ "layers.22.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
181
+ "layers.22.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
182
+ "layers.22.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
183
+ "layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
184
+ "layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
185
+ "layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
186
+ "layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
187
+ "layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
188
+ "layers.23.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
189
+ "layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
190
+ "layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
191
+ "layers.23.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
192
+ "layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
193
+ "layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
194
+ "layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
195
+ "layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
196
+ "layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
197
+ "layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
198
+ "layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
199
+ "layers.24.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
200
+ "layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
201
+ "layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
202
+ "layers.24.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
203
+ "layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
204
+ "layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
205
+ "layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
206
+ "layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
207
+ "layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
208
+ "layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
209
+ "layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
210
+ "layers.25.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
211
+ "layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
212
+ "layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
213
+ "layers.25.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
214
+ "layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
215
+ "layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
216
+ "layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
217
+ "layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
218
+ "layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
219
+ "layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
220
+ "layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
221
+ "layers.26.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
222
+ "layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
223
+ "layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
224
+ "layers.26.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
225
+ "layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
226
+ "layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
227
+ "layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
228
+ "layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
229
+ "layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
230
+ "layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
231
+ "layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
232
+ "layers.27.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
233
+ "layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
234
+ "layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
235
+ "layers.27.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
236
+ "layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
237
+ "layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
238
+ "layers.28.input_layernorm.weight": "model-00003-of-00004.safetensors",
239
+ "layers.28.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
240
+ "layers.28.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
241
+ "layers.28.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
242
+ "layers.28.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
243
+ "layers.28.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
244
+ "layers.28.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
245
+ "layers.28.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
246
+ "layers.28.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
247
+ "layers.28.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
248
+ "layers.28.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
249
+ "layers.29.input_layernorm.weight": "model-00003-of-00004.safetensors",
250
+ "layers.29.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
251
+ "layers.29.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
252
+ "layers.29.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
253
+ "layers.29.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
254
+ "layers.29.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
255
+ "layers.29.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
256
+ "layers.29.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
257
+ "layers.29.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
258
+ "layers.29.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
259
+ "layers.29.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
260
+ "layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
261
+ "layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
262
+ "layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
263
+ "layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
264
+ "layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
265
+ "layers.3.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
266
+ "layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
267
+ "layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
268
+ "layers.3.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
269
+ "layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
270
+ "layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
271
+ "layers.30.input_layernorm.weight": "model-00003-of-00004.safetensors",
272
+ "layers.30.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
273
+ "layers.30.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
274
+ "layers.30.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
275
+ "layers.30.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
276
+ "layers.30.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
277
+ "layers.30.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
278
+ "layers.30.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
279
+ "layers.30.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
280
+ "layers.30.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
281
+ "layers.30.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
282
+ "layers.31.input_layernorm.weight": "model-00003-of-00004.safetensors",
283
+ "layers.31.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
284
+ "layers.31.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
285
+ "layers.31.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
286
+ "layers.31.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
287
+ "layers.31.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
288
+ "layers.31.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
289
+ "layers.31.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
290
+ "layers.31.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
291
+ "layers.31.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
292
+ "layers.31.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
293
+ "layers.32.input_layernorm.weight": "model-00003-of-00004.safetensors",
294
+ "layers.32.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
295
+ "layers.32.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
296
+ "layers.32.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
297
+ "layers.32.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
298
+ "layers.32.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
299
+ "layers.32.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
300
+ "layers.32.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
301
+ "layers.32.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
302
+ "layers.32.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
303
+ "layers.32.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
304
+ "layers.33.input_layernorm.weight": "model-00003-of-00004.safetensors",
305
+ "layers.33.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
306
+ "layers.33.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
307
+ "layers.33.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
308
+ "layers.33.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
309
+ "layers.33.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
310
+ "layers.33.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
311
+ "layers.33.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
312
+ "layers.33.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
313
+ "layers.33.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
314
+ "layers.33.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
315
+ "layers.34.input_layernorm.weight": "model-00003-of-00004.safetensors",
316
+ "layers.34.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
317
+ "layers.34.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
318
+ "layers.34.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
319
+ "layers.34.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
320
+ "layers.34.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
321
+ "layers.34.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
322
+ "layers.34.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
323
+ "layers.34.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
324
+ "layers.34.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
325
+ "layers.34.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
326
+ "layers.35.input_layernorm.weight": "model-00004-of-00004.safetensors",
327
+ "layers.35.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
328
+ "layers.35.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
329
+ "layers.35.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
330
+ "layers.35.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
331
+ "layers.35.self_attn.k_norm.weight": "model-00004-of-00004.safetensors",
332
+ "layers.35.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
333
+ "layers.35.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
334
+ "layers.35.self_attn.q_norm.weight": "model-00004-of-00004.safetensors",
335
+ "layers.35.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
336
+ "layers.35.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
337
+ "layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
338
+ "layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
339
+ "layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
340
+ "layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
341
+ "layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
342
+ "layers.4.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
343
+ "layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
344
+ "layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
345
+ "layers.4.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
346
+ "layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
347
+ "layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
348
+ "layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
349
+ "layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
350
+ "layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
351
+ "layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
352
+ "layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
353
+ "layers.5.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
354
+ "layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
355
+ "layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
356
+ "layers.5.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
357
+ "layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
358
+ "layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
359
+ "layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
360
+ "layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
361
+ "layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
362
+ "layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
363
+ "layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
364
+ "layers.6.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
365
+ "layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
366
+ "layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
367
+ "layers.6.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
368
+ "layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
369
+ "layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
370
+ "layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
371
+ "layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
372
+ "layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
373
+ "layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
374
+ "layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
375
+ "layers.7.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
376
+ "layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
377
+ "layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
378
+ "layers.7.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
379
+ "layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
380
+ "layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
381
+ "layers.8.input_layernorm.weight": "model-00001-of-00004.safetensors",
382
+ "layers.8.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
383
+ "layers.8.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
384
+ "layers.8.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
385
+ "layers.8.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
386
+ "layers.8.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
387
+ "layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
388
+ "layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
389
+ "layers.8.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
390
+ "layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
391
+ "layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
392
+ "layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
393
+ "layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
394
+ "layers.9.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
395
+ "layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
396
+ "layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
397
+ "layers.9.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
398
+ "layers.9.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
399
+ "layers.9.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
400
+ "layers.9.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
401
+ "layers.9.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
402
+ "layers.9.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
403
+ "norm.weight": "model-00004-of-00004.safetensors"
404
+ }
405
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
3
+ size 11421896
tokenizer_config.json ADDED
@@ -0,0 +1,208 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|im_end|>",
201
+ "errors": "replace",
202
+ "extra_special_tokens": {},
203
+ "model_max_length": 131072,
204
+ "pad_token": "<|endoftext|>",
205
+ "split_special_tokens": false,
206
+ "tokenizer_class": "Qwen2Tokenizer",
207
+ "unk_token": null
208
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff