Image-to-Image
Diffusers
nielsr HF Staff commited on
Commit
9e9f594
Β·
verified Β·
1 Parent(s): 3e8fd09

Add pipeline tag and library name

Browse files

This PR adds the `pipeline_tag` and `library_name` to the model card metadata. The `pipeline_tag` is set to `image-to-image` as the model generates images from images. The `library_name` is set to `diffusers` based on the training scripts and code examples provided.

Files changed (1) hide show
  1. README.md +42 -3
README.md CHANGED
@@ -1,3 +1,42 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ pipeline_tag: image-to-image
4
+ library_name: diffusers
5
+ ---
6
+
7
+ <h1 align="center"> REPA-E: Unlocking VAE for End-to-End Tuning of Latent Diffusion Transformers </h1>
8
+
9
+ <p align="center">
10
+ <a href="https://scholar.google.com.au/citations?user=GQzvqS4AAAAJ" target="_blank">Xingjian&nbsp;Leng</a><sup>1*</sup> &ensp; <b>&middot;</b> &ensp;
11
+ <a href="https://1jsingh.github.io/" target="_blank">Jaskirat&nbsp;Singh</a><sup>1*</sup> &ensp; <b>&middot;</b> &ensp;
12
+ <a href="https://hou-yz.github.io/" target="_blank">Yunzhong&nbsp;Hou</a><sup>1</sup> &ensp; <b>&middot;</b> &ensp;
13
+ <a href="https://people.csiro.au/X/Z/Zhenchang-Xing/" target="_blank">Zhenchang&nbsp;Xing</a><sup>2</sup>&ensp; <b>&middot;</b> &ensp;
14
+ <a href="https://www.sainingxie.com/" target="_blank">Saining&nbsp;Xie</a><sup>3</sup>&ensp; <b>&middot;</b> &ensp;
15
+ <a href="https://zheng-lab-anu.github.io/" target="_blank">Liang&nbsp;Zheng</a><sup>1</sup>&ensp;
16
+ </p>
17
+
18
+ <p align="center">
19
+ <sup>1</sup> Australian National University &emsp; <sup>2</sup>Data61-CSIRO &emsp; <sup>3</sup>New York University &emsp; <br>
20
+ <sub><sup>*</sup>Project Leads &emsp;</sub>
21
+ </p>
22
+
23
+ <p align="center">
24
+ <a href="https://End2End-Diffusion.github.io">🌐 Project Page</a> &ensp;
25
+ <a href="https://huggingface.co/REPA-E">πŸ€— Models</a> &ensp;
26
+ <a href="https://arxiv.org/abs/2504.10483">πŸ“ƒ Paper</a> &ensp;
27
+ <br><br>
28
+ <a href="https://paperswithcode.com/sota/image-generation-on-imagenet-256x256?p=repa-e-unlocking-vae-for-end-to-end-tuning-of"><img src="https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/repa-e-unlocking-vae-for-end-to-end-tuning-of/image-generation-on-imagenet-256x256" alt="PWC"></a>
29
+ </p>
30
+
31
+ ![](assets/vis-examples.jpg)
32
+
33
+ ## Overview
34
+ We address a fundamental question: ***Can latent diffusion models and their VAE tokenizer be trained end-to-end?*** While training both components jointly with standard diffusion loss is observed to be ineffective β€” often degrading final performance β€” we show that this limitation can be overcome using a simple representation-alignment (REPA) loss. Our proposed method, **REPA-E**, enables stable and effective joint training of both the VAE and the diffusion model.
35
+
36
+ ![](assets/overview.jpg)
37
+
38
+ **REPA-E** significantly accelerates training β€” achieving over **17Γ—** speedup compared to REPA and **45Γ—** over the vanilla training recipe. Interestingly, end-to-end tuning also improves the VAE itself: the resulting **E2E-VAE** provides better latent structure and serves as a **drop-in replacement** for existing VAEs (e.g., SD-VAE), improving convergence and generation quality across diverse LDM architectures. Our method achieves state-of-the-art FID scores on ImageNet 256Γ—256: **1.26** with CFG and **1.83** without CFG.
39
+
40
+ ## News and Updates
41
+ **[2025-04-15]** Initial Release with pre-trained models and codebase.
42
+ ... (rest of the content remains unchanged)