Update README.md
Browse files
README.md
CHANGED
|
@@ -7,11 +7,19 @@ language:
|
|
| 7 |
metrics:
|
| 8 |
- accuracy
|
| 9 |
base_model:
|
| 10 |
-
-
|
| 11 |
pipeline_tag: reinforcement-learning
|
| 12 |
model-index:
|
| 13 |
-
- name: RLinf-
|
| 14 |
results:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
- task:
|
| 16 |
type: VLA
|
| 17 |
dataset:
|
|
@@ -19,7 +27,7 @@ model-index:
|
|
| 19 |
name: maniskill-vision
|
| 20 |
metrics:
|
| 21 |
- type: accuracy
|
| 22 |
-
value:
|
| 23 |
- task:
|
| 24 |
type: VLA
|
| 25 |
dataset:
|
|
@@ -27,7 +35,7 @@ model-index:
|
|
| 27 |
name: maniskill-semantic
|
| 28 |
metrics:
|
| 29 |
- type: accuracy
|
| 30 |
-
value:
|
| 31 |
- task:
|
| 32 |
type: VLA
|
| 33 |
dataset:
|
|
@@ -35,8 +43,9 @@ model-index:
|
|
| 35 |
name: maniskill-position
|
| 36 |
metrics:
|
| 37 |
- type: accuracy
|
| 38 |
-
value:
|
| 39 |
---
|
|
|
|
| 40 |
<div align="center">
|
| 41 |
<img src="logo.svg" alt="RLinf-logo" width="500"/>
|
| 42 |
</div>
|
|
@@ -61,7 +70,7 @@ model-index:
|
|
| 61 |
</div>
|
| 62 |
|
| 63 |
## Model Description
|
| 64 |
-
This
|
| 65 |
|
| 66 |
## Full OOD Evaluation and Results
|
| 67 |
### Overall Eval Results
|
|
@@ -107,11 +116,11 @@ Note: rl4vla refers to the paper VLA-RL-Study: What Can RL Bring to VLA Generali
|
|
| 107 |
| mid-episode object reposition | 0.8828 | 0.4570 | 0.7891 | **0.9212** | 0.8828 |
|
| 108 |
|
| 109 |
## How to Use
|
| 110 |
-
Please integrate the provided model with the [RLinf](https://github.com/RLinf/RLinf) codebase. To do so, modify the following parameters in the configuration file ``examples/embodiment/config/
|
| 111 |
|
| 112 |
- Set ``actor.checkpoint_load_path``, ``actor.tokenizer.tokenizer_model``, and ``rollout.model_dir`` to the path of the model checkpoint.
|
| 113 |
|
| 114 |
Note: If you intend to evaluate the model directly, make sure to set ``actor.model.is_lora`` to ``false``.
|
| 115 |
|
| 116 |
## License
|
| 117 |
-
This code repository and the model weights are licensed under the MIT License.
|
|
|
|
| 7 |
metrics:
|
| 8 |
- accuracy
|
| 9 |
base_model:
|
| 10 |
+
- gen-robot/openvla-7b-rlvla-warmup
|
| 11 |
pipeline_tag: reinforcement-learning
|
| 12 |
model-index:
|
| 13 |
+
- name: RLinf-openvla-maniskill3-ppo
|
| 14 |
results:
|
| 15 |
+
- task:
|
| 16 |
+
type: VLA
|
| 17 |
+
dataset:
|
| 18 |
+
type: maniskill-train
|
| 19 |
+
name: maniskill-train
|
| 20 |
+
metrics:
|
| 21 |
+
- type: accuracy
|
| 22 |
+
value: 96.09
|
| 23 |
- task:
|
| 24 |
type: VLA
|
| 25 |
dataset:
|
|
|
|
| 27 |
name: maniskill-vision
|
| 28 |
metrics:
|
| 29 |
- type: accuracy
|
| 30 |
+
value: 82.03
|
| 31 |
- task:
|
| 32 |
type: VLA
|
| 33 |
dataset:
|
|
|
|
| 35 |
name: maniskill-semantic
|
| 36 |
metrics:
|
| 37 |
- type: accuracy
|
| 38 |
+
value: 78.35
|
| 39 |
- task:
|
| 40 |
type: VLA
|
| 41 |
dataset:
|
|
|
|
| 43 |
name: maniskill-position
|
| 44 |
metrics:
|
| 45 |
- type: accuracy
|
| 46 |
+
value: 85.42
|
| 47 |
---
|
| 48 |
+
|
| 49 |
<div align="center">
|
| 50 |
<img src="logo.svg" alt="RLinf-logo" width="500"/>
|
| 51 |
</div>
|
|
|
|
| 70 |
</div>
|
| 71 |
|
| 72 |
## Model Description
|
| 73 |
+
This model is trained on ``gen-robot/openvla-7b-rlvla-warmup`` by Proximal Policy Optimization (PPO) on the ManiSkill simulator.
|
| 74 |
|
| 75 |
## Full OOD Evaluation and Results
|
| 76 |
### Overall Eval Results
|
|
|
|
| 116 |
| mid-episode object reposition | 0.8828 | 0.4570 | 0.7891 | **0.9212** | 0.8828 |
|
| 117 |
|
| 118 |
## How to Use
|
| 119 |
+
Please integrate the provided model with the [RLinf](https://github.com/RLinf/RLinf) codebase. To do so, modify the following parameters in the configuration file ``examples/embodiment/config/maniskill_ppo_openvla.yaml``:
|
| 120 |
|
| 121 |
- Set ``actor.checkpoint_load_path``, ``actor.tokenizer.tokenizer_model``, and ``rollout.model_dir`` to the path of the model checkpoint.
|
| 122 |
|
| 123 |
Note: If you intend to evaluate the model directly, make sure to set ``actor.model.is_lora`` to ``false``.
|
| 124 |
|
| 125 |
## License
|
| 126 |
+
This code repository and the model weights are licensed under the MIT License.
|