RS2002 commited on
Commit
83fc46d
·
verified ·
1 Parent(s): 3afa065

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +83 -0
README.md ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Skip-BART
2
+
3
+ The description is generated by Grok3.
4
+
5
+ ## Model Details
6
+
7
+ - **Model Name**: Skip-BART
8
+
9
+ - **Model Type**: Transformer-based model (BART architecture) for automatic stage lighting control
10
+
11
+ - **Version**: 1.0
12
+
13
+ - **Release Date**: August 2025
14
+
15
+ - **Developers**: Zijian Zhao, Dian Jin
16
+
17
+ - **Organization**: HKUST, PolyU
18
+
19
+ - **License**: Apache License 2.0
20
+
21
+ - **Paper**: [Automatic Stage Lighting Control: Is it a Rule-Driven Process or Generative Task?](https://arxiv.org/abs/2506.01482)
22
+
23
+ - **Citation:**
24
+
25
+ ```
26
+ @article{zhao2025automatic,
27
+ title={Automatic Stage Lighting Control: Is it a Rule-Driven Process or Generative Task?},
28
+ author={Zhao, Zijian and Jin, Dian and Zhou, Zijing and Zhang, Xiaoyu},
29
+ journal={arXiv preprint arXiv:2506.01482},
30
+ year={2025}
31
+ }
32
+ ```
33
+
34
+ - **Contact**: [email protected]
35
+
36
+ - **Repository**: https://github.com/RS2002/Skip-BART
37
+
38
+ ## Model Description
39
+
40
+ Skip-BART is a transformer-based model built on the Bidirectional and Auto-Regressive Transformers (BART) architecture, designed for automatic stage lighting control. It generates lighting sequences synchronized with music input, treating stage lighting as a generative task. The model processes music data in an octuple format and outputs lighting control parameters, leveraging a skip-connection-enhanced BART structure for improved performance.
41
+
42
+ - **Architecture**: BART with skip connections
43
+ - **Input Format**: Encoder input (batch_size, length, 512), decoder input (batch_size, length, 2), attention masks (batch_size, length)
44
+ - **Output Format**: Hidden states of dimension [batch_size, length, 1024]
45
+ - **Hidden Size**: 1024
46
+ - **Training Objective**: Pre-training on music data, followed by fine-tuning for lighting sequence generation
47
+ - **Tasks Supported**: Stage lighting sequence generation
48
+
49
+ ## Training Data
50
+
51
+ The model was trained on the **RPMC-L2** dataset:
52
+
53
+ - **Dataset Source**: [RPMC-L2](https://zenodo.org/records/14854217?token=eyJhbGciOiJIUzUxMiJ9.eyJpZCI6IjM5MDcwY2E5LTY0MzUtNGZhZC04NzA4LTczMjNhNTZiOGZmYSIsImRhdGEiOnt9LCJyYW5kb20iOiI1YWRkZmNiMmYyOGNiYzI4ZWUxY2QwNTAyY2YxNTY4ZiJ9.0Jr6GYfyyn02F96eVpkjOtcE-MM1wt-_ctOshdNGMUyUKI15-9Rfp9VF30_hYOTqv_9lLj-7Wj0qGyR3p9cA5w)
54
+ - **Description**: Contains music and corresponding stage lighting data in a format suitable for training Skip-BART.
55
+ - **Details**: Refer to the [paper](https://arxiv.org/abs/2506.01482) for dataset specifics.
56
+
57
+ ## Usage
58
+
59
+ ### Installation
60
+
61
+ ```shell
62
+ git clone https://huggingface.co/RS2002/Skip-BART
63
+ ```
64
+
65
+ ### Example Code
66
+
67
+ ```python
68
+ import torch
69
+ from model import Skip_BART
70
+
71
+ # Load the model
72
+ model = Skip_BART.from_pretrained("RS2002/Skip_BART")
73
+
74
+ # Example input
75
+ x_encoder = torch.rand((2, 1024, 512))
76
+ x_decoder = torch.randint(0, 10, (2, 1024, 2))
77
+ encoder_attention_mask = torch.zeros((2, 1024))
78
+ decoder_attention_mask = torch.zeros((2, 1024))
79
+
80
+ # Forward pass
81
+ output = model(x_encoder, x_decoder, encoder_attention_mask, decoder_attention_mask)
82
+ print(output.last_hidden_state.size()) # Output: [2, 1024, 1024]
83
+ ```