File size: 1,750 Bytes
73b57b1
55cdf87
 
 
 
 
 
 
73b57b1
55cdf87
fb0fa23
55cdf87
fb0fa23
55cdf87
90dd48b
55cdf87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb0fa23
 
55cdf87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb0fa23
55cdf87
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
---
license: apache-2.0
tags:
- pretrained
- mistral
- DNA
- biology
- genomics
---

# Model Card for Mistral-DNA-v1-138M-bacteria (mistral for DNA)

The Mistral-DNA-v1-138M-bacteria Large Language Model (LLM) is a pretrained generative DNA text model with 17.31M parameters x 8 experts = 138.5M parameters. 
It is derived from Mistral-7B-v0.1 model, which was simplified for DNA: the number of layers and the hidden size were reduced. 
The model was pretrained using around 700 bacterial genomes with 10kb DNA sequences. 

For full details of this model please read our [github repo](https://github.com/raphaelmourad/Mistral-DNA).

## Model Architecture

Like Mistral-7B-v0.1, it is a transformer model, with the following architecture choices:
- Grouped-Query Attention
- Sliding-Window Attention
- Byte-fallback BPE tokenizer

## Load the model from huggingface:

```
import torch
from transformers import AutoTokenizer, AutoModel

tokenizer = AutoTokenizer.from_pretrained("RaphaelMourad/Mistral-DNA-v1-138M-bacteria", trust_remote_code=True) # Same as DNABERT2
model = AutoModel.from_pretrained("RaphaelMourad/Mistral-DNA-v1-138M-bacteria", trust_remote_code=True)
```

## Calculate the embedding of a DNA sequence

```
dna = "TGATGATTGGCGCGGCTAGGATCGGCT"
inputs = tokenizer(dna, return_tensors = 'pt')["input_ids"]
hidden_states = model(inputs)[0] # [1, sequence_length, 256]

# embedding with max pooling
embedding_max = torch.max(hidden_states[0], dim=0)[0]
print(embedding_max.shape) # expect to be 256
```

## Troubleshooting

Ensure you are utilizing a stable version of Transformers, 4.34.0 or newer.

## Notice

Mistral-DNA-v1-138M-bacteria is a pretrained base model for DNA.

## Contact
 
Raphaël Mourad. [email protected]