Safetensors
qwen2_5_vl
Zeyu077 commited on
Commit
d4e6986
·
verified ·
1 Parent(s): f6165ef

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +57 -0
README.md CHANGED
@@ -1,6 +1,63 @@
1
  ---
2
  license: apache-2.0
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  ## Citation Information
5
  If you find this work useful, we would be grateful if you consider citing the following papers:
6
  ```bibtex
 
1
  ---
2
  license: apache-2.0
3
  ---
4
+ ## Inference
5
+ Our models are established on top of the Qwen2.5-VL family. So we include a simple use case here, and refer the readers to [the standard inference procedure of Qwen2.5-VL](https://github.com/QwenLM/Qwen2.5-VL).
6
+
7
+
8
+ ```python
9
+ from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor
10
+ from qwen_vl_utils import process_vision_info
11
+
12
+ # default: Load the model on the available device(s)
13
+ model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
14
+ "Reallm-Labs/Infi-MMR-3B", torch_dtype="auto", device_map="auto"
15
+ )
16
+ min_pixels = 256*28*28
17
+ max_pixels = 1280*28*28
18
+ processor = AutoProcessor.from_pretrained("Reallm-Labs/Infi-MMR-3B", min_pixels=min_pixels, max_pixels=max_pixels)
19
+
20
+ messages = [
21
+ {
22
+ "role": "user",
23
+ "content": [
24
+ {
25
+ "type": "image",
26
+ "image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg",
27
+ },
28
+ {"type": "text", "text": "Describe this image."},
29
+ ],
30
+ }
31
+ ]
32
+
33
+ # Preparation for inference
34
+ text = processor.apply_chat_template(
35
+ messages, tokenize=False, add_generation_prompt=True
36
+ )
37
+ image_inputs, video_inputs = process_vision_info(messages)
38
+ inputs = processor(
39
+ text=[text],
40
+ images=image_inputs,
41
+ videos=video_inputs,
42
+ padding=True,
43
+ return_tensors="pt",
44
+ )
45
+ inputs = inputs.to(model.device)
46
+
47
+ # Inference: Generation of the output
48
+ generated_ids = model.generate(**inputs, max_new_tokens=4096)
49
+ generated_ids_trimmed = [
50
+ out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
51
+ ]
52
+ output_text = processor.batch_decode(
53
+ generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
54
+ )
55
+ print(output_text)
56
+
57
+ ```
58
+
59
+
60
+
61
  ## Citation Information
62
  If you find this work useful, we would be grateful if you consider citing the following papers:
63
  ```bibtex