Update README.md
Browse files
README.md
CHANGED
|
@@ -32,8 +32,9 @@ base_model: meta-llama/Meta-Llama-3.1-8B-Instruct
|
|
| 32 |
- **License(s):** [llama3.1](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B/blob/main/LICENSE)
|
| 33 |
- **Model Developers:** Neural Magic
|
| 34 |
|
| 35 |
-
|
| 36 |
-
It
|
|
|
|
| 37 |
|
| 38 |
### Model Optimizations
|
| 39 |
|
|
@@ -137,20 +138,29 @@ oneshot(
|
|
| 137 |
|
| 138 |
## Evaluation
|
| 139 |
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 143 |
|
| 144 |
### Accuracy
|
| 145 |
|
| 146 |
-
#### Open LLM Leaderboard evaluation scores
|
| 147 |
<table>
|
| 148 |
<tr>
|
| 149 |
<td><strong>Benchmark</strong>
|
| 150 |
</td>
|
| 151 |
<td><strong>Meta-Llama-3.1-8B-Instruct </strong>
|
| 152 |
</td>
|
| 153 |
-
<td><strong>Meta-Llama-3.1-8B-Instruct-FP8-dynamic(this model)</strong>
|
| 154 |
</td>
|
| 155 |
<td><strong>Recovery</strong>
|
| 156 |
</td>
|
|
@@ -165,12 +175,26 @@ This version of the lm-evaluation-harness includes versions of ARC-Challenge, GS
|
|
| 165 |
<td>100.1%
|
| 166 |
</td>
|
| 167 |
</tr>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 168 |
<tr>
|
| 169 |
<td>MMLU-cot (0-shot)
|
| 170 |
</td>
|
| 171 |
-
<td>71.
|
| 172 |
</td>
|
| 173 |
-
<td>71.
|
| 174 |
</td>
|
| 175 |
<td>100.5%
|
| 176 |
</td>
|
|
@@ -178,19 +202,19 @@ This version of the lm-evaluation-harness includes versions of ARC-Challenge, GS
|
|
| 178 |
<tr>
|
| 179 |
<td>ARC Challenge (0-shot)
|
| 180 |
</td>
|
| 181 |
-
<td>82.
|
| 182 |
</td>
|
| 183 |
-
<td>81.
|
| 184 |
</td>
|
| 185 |
-
<td>99.
|
| 186 |
</td>
|
| 187 |
</tr>
|
| 188 |
<tr>
|
| 189 |
<td>GSM-8K-cot (8-shot, strict-match)
|
| 190 |
</td>
|
| 191 |
-
<td>
|
| 192 |
</td>
|
| 193 |
-
<td>82.
|
| 194 |
</td>
|
| 195 |
<td>100.0%
|
| 196 |
</td>
|
|
@@ -198,21 +222,21 @@ This version of the lm-evaluation-harness includes versions of ARC-Challenge, GS
|
|
| 198 |
<tr>
|
| 199 |
<td>Hellaswag (10-shot)
|
| 200 |
</td>
|
| 201 |
-
<td>80.
|
| 202 |
</td>
|
| 203 |
-
<td>80.
|
| 204 |
</td>
|
| 205 |
-
<td>99.
|
| 206 |
</td>
|
| 207 |
</tr>
|
| 208 |
<tr>
|
| 209 |
<td>Winogrande (5-shot)
|
| 210 |
</td>
|
| 211 |
-
<td>78.
|
| 212 |
</td>
|
| 213 |
-
<td>77.
|
| 214 |
</td>
|
| 215 |
-
<td>
|
| 216 |
</td>
|
| 217 |
</tr>
|
| 218 |
<tr>
|
|
@@ -220,19 +244,117 @@ This version of the lm-evaluation-harness includes versions of ARC-Challenge, GS
|
|
| 220 |
</td>
|
| 221 |
<td>54.5
|
| 222 |
</td>
|
| 223 |
-
<td>54.
|
| 224 |
</td>
|
| 225 |
-
<td>99.
|
| 226 |
</td>
|
| 227 |
</tr>
|
| 228 |
<tr>
|
| 229 |
<td><strong>Average</strong>
|
| 230 |
</td>
|
| 231 |
-
<td><strong>73.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 232 |
</td>
|
| 233 |
-
<td
|
| 234 |
</td>
|
| 235 |
-
<td
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 236 |
</td>
|
| 237 |
</tr>
|
| 238 |
</table>
|
|
@@ -313,4 +435,38 @@ lm_eval \
|
|
| 313 |
--tasks truthfulqa \
|
| 314 |
--num_fewshot 0 \
|
| 315 |
--batch_size auto
|
| 316 |
-
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
- **License(s):** [llama3.1](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B/blob/main/LICENSE)
|
| 33 |
- **Model Developers:** Neural Magic
|
| 34 |
|
| 35 |
+
This model is a quantized version of [Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct).
|
| 36 |
+
It was evaluated on a several tasks to assess the its quality in comparison to the unquatized model, including multiple-choice, math reasoning, and open-ended text generation.
|
| 37 |
+
Meta-Llama-3.1-8B-Instruct-FP8-dynamic achieves 105.4% recovery for the Arena-Hard evaluation, 99.7% for OpenLLM v1 (using Meta's prompting when available), 101.2% for OpenLLM v2, 100.0% for HumanEval pass@1, and 101.0% for HumanEval+ pass@1.
|
| 38 |
|
| 39 |
### Model Optimizations
|
| 40 |
|
|
|
|
| 138 |
|
| 139 |
## Evaluation
|
| 140 |
|
| 141 |
+
This model was evaluated on the well-known Arena-Hard, OpenLLM v1, OpenLLM v2, HumanEval, and HumanEval+ benchmarks.
|
| 142 |
+
In all cases, model outputs were generated with the [vLLM](https://docs.vllm.ai/en/stable/) engine.
|
| 143 |
+
|
| 144 |
+
Arena-Hard evaluations were conducted using the [Arena-Hard-Auto](https://github.com/lmarena/arena-hard-auto) repository.
|
| 145 |
+
The model generated a single answer for each prompt form Arena-Hard, and each answer was judged twice by GPT-4.
|
| 146 |
+
We report below the scores obtained in each judgement and the average.
|
| 147 |
+
|
| 148 |
+
OpenLLM v1 and v2 evaluations were conducted using Neural Magic's fork of [lm-evaluation-harness](https://github.com/neuralmagic/lm-evaluation-harness/tree/llama_3.1_instruct) (branch llama_3.1_instruct).
|
| 149 |
+
This version of the lm-evaluation-harness includes versions of MMLU, ARC-Challenge and GSM-8K that match the prompting style of [Meta-Llama-3.1-Instruct-evals](https://huggingface.co/datasets/meta-llama/Meta-Llama-3.1-8B-Instruct-evals) and a few fixes to OpenLLM v2 tasks.
|
| 150 |
+
|
| 151 |
+
HumanEval and HumanEval+ evaluations were conducted using Neural Magic's fork of the [EvalPlus](https://github.com/neuralmagic/evalplus) repository.
|
| 152 |
+
|
| 153 |
+
Detailed model outputs are available as HuggingFace datasets for [Arena-Hard](https://huggingface.co/datasets/neuralmagic/quantized-llama-3.1-arena-hard-evals), [OpenLLM v2](https://huggingface.co/datasets/neuralmagic/quantized-llama-3.1-leaderboard-v2-evals), and [HumanEval](https://huggingface.co/datasets/neuralmagic/quantized-llama-3.1-humaneval-evals).
|
| 154 |
|
| 155 |
### Accuracy
|
| 156 |
|
|
|
|
| 157 |
<table>
|
| 158 |
<tr>
|
| 159 |
<td><strong>Benchmark</strong>
|
| 160 |
</td>
|
| 161 |
<td><strong>Meta-Llama-3.1-8B-Instruct </strong>
|
| 162 |
</td>
|
| 163 |
+
<td><strong>Meta-Llama-3.1-8B-Instruct-FP8-dynamic (this model)</strong>
|
| 164 |
</td>
|
| 165 |
<td><strong>Recovery</strong>
|
| 166 |
</td>
|
|
|
|
| 175 |
<td>100.1%
|
| 176 |
</td>
|
| 177 |
</tr>
|
| 178 |
+
<tr>
|
| 179 |
+
<td><strong>Arena Hard</strong>
|
| 180 |
+
</td>
|
| 181 |
+
<td>25.8 (25.1 / 26.5)
|
| 182 |
+
</td>
|
| 183 |
+
<td>27.2 (27.4 / 27.0)
|
| 184 |
+
</td>
|
| 185 |
+
<td>105.4%
|
| 186 |
+
</td>
|
| 187 |
+
</tr>
|
| 188 |
+
<tr>
|
| 189 |
+
<td><strong>OpenLLM v1</strong>
|
| 190 |
+
</td>
|
| 191 |
+
</tr>
|
| 192 |
<tr>
|
| 193 |
<td>MMLU-cot (0-shot)
|
| 194 |
</td>
|
| 195 |
+
<td>71.2
|
| 196 |
</td>
|
| 197 |
+
<td>71.6
|
| 198 |
</td>
|
| 199 |
<td>100.5%
|
| 200 |
</td>
|
|
|
|
| 202 |
<tr>
|
| 203 |
<td>ARC Challenge (0-shot)
|
| 204 |
</td>
|
| 205 |
+
<td>82.0
|
| 206 |
</td>
|
| 207 |
+
<td>81.2
|
| 208 |
</td>
|
| 209 |
+
<td>99.1%
|
| 210 |
</td>
|
| 211 |
</tr>
|
| 212 |
<tr>
|
| 213 |
<td>GSM-8K-cot (8-shot, strict-match)
|
| 214 |
</td>
|
| 215 |
+
<td>82.0
|
| 216 |
</td>
|
| 217 |
+
<td>82.0
|
| 218 |
</td>
|
| 219 |
<td>100.0%
|
| 220 |
</td>
|
|
|
|
| 222 |
<tr>
|
| 223 |
<td>Hellaswag (10-shot)
|
| 224 |
</td>
|
| 225 |
+
<td>80.5
|
| 226 |
</td>
|
| 227 |
+
<td>80.0
|
| 228 |
</td>
|
| 229 |
+
<td>99.5%
|
| 230 |
</td>
|
| 231 |
</tr>
|
| 232 |
<tr>
|
| 233 |
<td>Winogrande (5-shot)
|
| 234 |
</td>
|
| 235 |
+
<td>78.5
|
| 236 |
</td>
|
| 237 |
+
<td>77.7
|
| 238 |
</td>
|
| 239 |
+
<td>99.0%
|
| 240 |
</td>
|
| 241 |
</tr>
|
| 242 |
<tr>
|
|
|
|
| 244 |
</td>
|
| 245 |
<td>54.5
|
| 246 |
</td>
|
| 247 |
+
<td>54.3
|
| 248 |
</td>
|
| 249 |
+
<td>99.6%
|
| 250 |
</td>
|
| 251 |
</tr>
|
| 252 |
<tr>
|
| 253 |
<td><strong>Average</strong>
|
| 254 |
</td>
|
| 255 |
+
<td><strong>73.8</strong>
|
| 256 |
+
</td>
|
| 257 |
+
<td><strong>73.6</strong>
|
| 258 |
+
</td>
|
| 259 |
+
<td><strong>99.7%</strong>
|
| 260 |
+
</td>
|
| 261 |
+
</tr>
|
| 262 |
+
<tr>
|
| 263 |
+
<td><strong>OpenLLM v2</strong>
|
| 264 |
+
</td>
|
| 265 |
+
</tr>
|
| 266 |
+
<tr>
|
| 267 |
+
<td>MMLU-Pro (5-shot)
|
| 268 |
+
</td>
|
| 269 |
+
<td>30.8
|
| 270 |
+
</td>
|
| 271 |
+
<td>31.2
|
| 272 |
+
</td>
|
| 273 |
+
<td>101.3%
|
| 274 |
+
</td>
|
| 275 |
+
</tr>
|
| 276 |
+
<tr>
|
| 277 |
+
<td>IFEval (0-shot)
|
| 278 |
+
</td>
|
| 279 |
+
<td>77.9
|
| 280 |
+
</td>
|
| 281 |
+
<td>77.2
|
| 282 |
+
</td>
|
| 283 |
+
<td>99.1%
|
| 284 |
+
</td>
|
| 285 |
+
</tr>
|
| 286 |
+
<tr>
|
| 287 |
+
<td>BBH (3-shot)
|
| 288 |
+
</td>
|
| 289 |
+
<td>30.1
|
| 290 |
+
</td>
|
| 291 |
+
<td>29.7
|
| 292 |
+
</td>
|
| 293 |
+
<td>98.5%
|
| 294 |
+
</td>
|
| 295 |
+
</tr>
|
| 296 |
+
<tr>
|
| 297 |
+
<td>Math-|v|-5 (4-shot)
|
| 298 |
+
</td>
|
| 299 |
+
<td>15.7
|
| 300 |
+
</td>
|
| 301 |
+
<td>16.5
|
| 302 |
+
</td>
|
| 303 |
+
<td>105.4%
|
| 304 |
+
</td>
|
| 305 |
+
</tr>
|
| 306 |
+
<tr>
|
| 307 |
+
<td>GPQA (0-shot)
|
| 308 |
+
</td>
|
| 309 |
+
<td>3.7
|
| 310 |
</td>
|
| 311 |
+
<td>5.7
|
| 312 |
</td>
|
| 313 |
+
<td>156.0%
|
| 314 |
+
</td>
|
| 315 |
+
</tr>
|
| 316 |
+
<tr>
|
| 317 |
+
<td>MuSR (0-shot)
|
| 318 |
+
</td>
|
| 319 |
+
<td>7.6
|
| 320 |
+
</td>
|
| 321 |
+
<td>7.5
|
| 322 |
+
</td>
|
| 323 |
+
<td>98.8%
|
| 324 |
+
</td>
|
| 325 |
+
</tr>
|
| 326 |
+
<tr>
|
| 327 |
+
<td><strong>Average</strong>
|
| 328 |
+
</td>
|
| 329 |
+
<td><strong>27.6</strong>
|
| 330 |
+
</td>
|
| 331 |
+
<td><strong>28.0</strong>
|
| 332 |
+
</td>
|
| 333 |
+
<td><strong>101.2%</strong>
|
| 334 |
+
</td>
|
| 335 |
+
</tr>
|
| 336 |
+
<tr>
|
| 337 |
+
<td><strong>Coding</strong>
|
| 338 |
+
</td>
|
| 339 |
+
</tr>
|
| 340 |
+
<tr>
|
| 341 |
+
<td>HumanEval pass@1
|
| 342 |
+
</td>
|
| 343 |
+
<td>67.3
|
| 344 |
+
</td>
|
| 345 |
+
<td>67.3
|
| 346 |
+
</td>
|
| 347 |
+
<td>100.0%
|
| 348 |
+
</td>
|
| 349 |
+
</tr>
|
| 350 |
+
<tr>
|
| 351 |
+
<td>HumanEval+ pass@1
|
| 352 |
+
</td>
|
| 353 |
+
<td>60.7
|
| 354 |
+
</td>
|
| 355 |
+
<td>61.3
|
| 356 |
+
</td>
|
| 357 |
+
<td>101.0%
|
| 358 |
</td>
|
| 359 |
</tr>
|
| 360 |
</table>
|
|
|
|
| 435 |
--tasks truthfulqa \
|
| 436 |
--num_fewshot 0 \
|
| 437 |
--batch_size auto
|
| 438 |
+
```
|
| 439 |
+
|
| 440 |
+
#### OpenLLM v2
|
| 441 |
+
```
|
| 442 |
+
lm_eval \
|
| 443 |
+
--model vllm \
|
| 444 |
+
--model_args pretrained="neuralmagic/Meta-Llama-3.1-8B-Instruct-FP8-dynamic",dtype=auto,max_model_len=4096,tensor_parallel_size=1,enable_chunked_prefill=True \
|
| 445 |
+
--apply_chat_template \
|
| 446 |
+
--fewshot_as_multiturn \
|
| 447 |
+
--tasks leaderboard \
|
| 448 |
+
--batch_size auto
|
| 449 |
+
```
|
| 450 |
+
|
| 451 |
+
#### HumanEval and HumanEval+
|
| 452 |
+
##### Generation
|
| 453 |
+
```
|
| 454 |
+
python3 codegen/generate.py \
|
| 455 |
+
--model neuralmagic/Meta-Llama-3.1-8B-Instruct-FP8-dynamic \
|
| 456 |
+
--bs 16 \
|
| 457 |
+
--temperature 0.2 \
|
| 458 |
+
--n_samples 50 \
|
| 459 |
+
--root "." \
|
| 460 |
+
--dataset humaneval
|
| 461 |
+
```
|
| 462 |
+
##### Sanitization
|
| 463 |
+
```
|
| 464 |
+
python3 evalplus/sanitize.py \
|
| 465 |
+
humaneval/neuralmagic--Meta-Llama-3.1-8B-Instruct-FP8-dynamic_vllm_temp_0.2
|
| 466 |
+
```
|
| 467 |
+
##### Evaluation
|
| 468 |
+
```
|
| 469 |
+
evalplus.evaluate \
|
| 470 |
+
--dataset humaneval \
|
| 471 |
+
--samples humaneval/neuralmagic--Meta-Llama-3.1-8B-Instruct-FP8-dynamic_vllm_temp_0.2-sanitized
|
| 472 |
+
```
|