Update README.md
Browse files
README.md
CHANGED
|
@@ -120,20 +120,94 @@ vLLM aslo supports OpenAI-compatible serving. See the [documentation](https://do
|
|
| 120 |
|
| 121 |
## Evaluation
|
| 122 |
|
| 123 |
-
The model was evaluated on the OpenLLM leaderboard tasks (
|
|
|
|
| 124 |
|
| 125 |
<details>
|
| 126 |
<summary>Evaluation details</summary>
|
| 127 |
|
|
|
|
| 128 |
```
|
| 129 |
lm_eval \
|
| 130 |
--model vllm \
|
| 131 |
-
--model_args pretrained="RedHatAI/Qwen3-1.7B-FP8-dynamic",dtype=auto,gpu_memory_utilization=0.5,max_model_len=8192,enable_chunk_prefill=True,tensor_parallel_size=
|
| 132 |
--tasks openllm \
|
| 133 |
--apply_chat_template\
|
| 134 |
--fewshot_as_multiturn \
|
| 135 |
--batch_size auto
|
| 136 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 137 |
</details>
|
| 138 |
|
| 139 |
### Accuracy
|
|
@@ -223,4 +297,140 @@ The model was evaluated on the OpenLLM leaderboard tasks (version 1), using [lm-
|
|
| 223 |
<td><strong>98.6%</strong>
|
| 224 |
</td>
|
| 225 |
</tr>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 226 |
</table>
|
|
|
|
| 120 |
|
| 121 |
## Evaluation
|
| 122 |
|
| 123 |
+
The model was evaluated on the OpenLLM leaderboard tasks (versions 1 and 2), using [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness), and on reasoning tasks using [lighteval](https://github.com/neuralmagic/lighteval/tree/reasoning).
|
| 124 |
+
[vLLM](https://docs.vllm.ai/en/stable/) was used for all evaluations.
|
| 125 |
|
| 126 |
<details>
|
| 127 |
<summary>Evaluation details</summary>
|
| 128 |
|
| 129 |
+
**lm-evaluation-harness**
|
| 130 |
```
|
| 131 |
lm_eval \
|
| 132 |
--model vllm \
|
| 133 |
+
--model_args pretrained="RedHatAI/Qwen3-1.7B-FP8-dynamic",dtype=auto,gpu_memory_utilization=0.5,max_model_len=8192,enable_chunk_prefill=True,tensor_parallel_size=1 \
|
| 134 |
--tasks openllm \
|
| 135 |
--apply_chat_template\
|
| 136 |
--fewshot_as_multiturn \
|
| 137 |
--batch_size auto
|
| 138 |
```
|
| 139 |
+
|
| 140 |
+
```
|
| 141 |
+
lm_eval \
|
| 142 |
+
--model vllm \
|
| 143 |
+
--model_args pretrained="RedHatAI/Qwen3-1.7B-FP8-dynamic",dtype=auto,gpu_memory_utilization=0.5,max_model_len=8192,enable_chunk_prefill=True,tensor_parallel_size=1 \
|
| 144 |
+
--tasks mgsm \
|
| 145 |
+
--apply_chat_template\
|
| 146 |
+
--batch_size auto
|
| 147 |
+
```
|
| 148 |
+
|
| 149 |
+
```
|
| 150 |
+
lm_eval \
|
| 151 |
+
--model vllm \
|
| 152 |
+
--model_args pretrained="RedHatAI/Qwen3-1.7B-FP8-dynamic",dtype=auto,gpu_memory_utilization=0.5,max_model_len=16384,enable_chunk_prefill=True,tensor_parallel_size=1 \
|
| 153 |
+
--tasks leaderboard \
|
| 154 |
+
--apply_chat_template\
|
| 155 |
+
--fewshot_as_multiturn \
|
| 156 |
+
--batch_size auto
|
| 157 |
+
```
|
| 158 |
+
|
| 159 |
+
**lighteval**
|
| 160 |
+
|
| 161 |
+
lighteval_model_arguments.yaml
|
| 162 |
+
```yaml
|
| 163 |
+
model_parameters:
|
| 164 |
+
model_name: RedHatAI/Qwen3-1.7B-FP8-dynamic
|
| 165 |
+
dtype: auto
|
| 166 |
+
gpu_memory_utilization: 0.9
|
| 167 |
+
max_model_length: 40960
|
| 168 |
+
generation_parameters:
|
| 169 |
+
temperature: 0.6
|
| 170 |
+
top_k: 20
|
| 171 |
+
min_p: 0.0
|
| 172 |
+
top_p: 0.95
|
| 173 |
+
max_new_tokens: 32768
|
| 174 |
+
```
|
| 175 |
+
|
| 176 |
+
```
|
| 177 |
+
lighteval vllm \
|
| 178 |
+
--model_args lighteval_model_arguments.yaml \
|
| 179 |
+
--tasks lighteval|aime24|0|0 \
|
| 180 |
+
--use_chat_template = true
|
| 181 |
+
```
|
| 182 |
+
|
| 183 |
+
```
|
| 184 |
+
lighteval vllm \
|
| 185 |
+
--model_args lighteval_model_arguments.yaml \
|
| 186 |
+
--tasks lighteval|aime25|0|0 \
|
| 187 |
+
--use_chat_template = true
|
| 188 |
+
```
|
| 189 |
+
|
| 190 |
+
```
|
| 191 |
+
lighteval vllm \
|
| 192 |
+
--model_args lighteval_model_arguments.yaml \
|
| 193 |
+
--tasks lighteval|math_500|0|0 \
|
| 194 |
+
--use_chat_template = true
|
| 195 |
+
```
|
| 196 |
+
|
| 197 |
+
```
|
| 198 |
+
lighteval vllm \
|
| 199 |
+
--model_args lighteval_model_arguments.yaml \
|
| 200 |
+
--tasks lighteval|gpqa:diamond|0|0 \
|
| 201 |
+
--use_chat_template = true
|
| 202 |
+
```
|
| 203 |
+
|
| 204 |
+
```
|
| 205 |
+
lighteval vllm \
|
| 206 |
+
--model_args lighteval_model_arguments.yaml \
|
| 207 |
+
--tasks extended|lcb:codegeneration \
|
| 208 |
+
--use_chat_template = true
|
| 209 |
+
```
|
| 210 |
+
|
| 211 |
</details>
|
| 212 |
|
| 213 |
### Accuracy
|
|
|
|
| 297 |
<td><strong>98.6%</strong>
|
| 298 |
</td>
|
| 299 |
</tr>
|
| 300 |
+
<tr>
|
| 301 |
+
<td rowspan="7" ><strong>OpenLLM v2</strong>
|
| 302 |
+
</td>
|
| 303 |
+
<td>MMLU-Pro (5-shot)
|
| 304 |
+
</td>
|
| 305 |
+
<td>23.45
|
| 306 |
+
</td>
|
| 307 |
+
<td>21.38
|
| 308 |
+
</td>
|
| 309 |
+
<td>91.1%
|
| 310 |
+
</td>
|
| 311 |
+
</tr>
|
| 312 |
+
<tr>
|
| 313 |
+
<td>IFEval (0-shot)
|
| 314 |
+
</td>
|
| 315 |
+
<td>71.08
|
| 316 |
+
</td>
|
| 317 |
+
<td>70.93
|
| 318 |
+
</td>
|
| 319 |
+
<td>99.8%
|
| 320 |
+
</td>
|
| 321 |
+
</tr>
|
| 322 |
+
<tr>
|
| 323 |
+
<td>BBH (3-shot)
|
| 324 |
+
</td>
|
| 325 |
+
<td>7.13
|
| 326 |
+
</td>
|
| 327 |
+
<td>5.41
|
| 328 |
+
</td>
|
| 329 |
+
<td>---
|
| 330 |
+
</td>
|
| 331 |
+
</tr>
|
| 332 |
+
<tr>
|
| 333 |
+
<td>Math-lvl-5 (4-shot)
|
| 334 |
+
</td>
|
| 335 |
+
<td>35.91
|
| 336 |
+
</td>
|
| 337 |
+
<td>34.71
|
| 338 |
+
</td>
|
| 339 |
+
<td>96.7%
|
| 340 |
+
</td>
|
| 341 |
+
</tr>
|
| 342 |
+
<tr>
|
| 343 |
+
<td>GPQA (0-shot)
|
| 344 |
+
</td>
|
| 345 |
+
<td>0.11
|
| 346 |
+
</td>
|
| 347 |
+
<td>0.00
|
| 348 |
+
</td>
|
| 349 |
+
<td>---
|
| 350 |
+
</td>
|
| 351 |
+
</tr>
|
| 352 |
+
<tr>
|
| 353 |
+
<td>MuSR (0-shot)
|
| 354 |
+
</td>
|
| 355 |
+
<td>7.97
|
| 356 |
+
</td>
|
| 357 |
+
<td>7.18
|
| 358 |
+
</td>
|
| 359 |
+
<td>---
|
| 360 |
+
</td>
|
| 361 |
+
</tr>
|
| 362 |
+
<tr>
|
| 363 |
+
<td><strong>Average</strong>
|
| 364 |
+
</td>
|
| 365 |
+
<td><strong>24.28</strong>
|
| 366 |
+
</td>
|
| 367 |
+
<td><strong>23.27</strong>
|
| 368 |
+
</td>
|
| 369 |
+
<td><strong>95.8%</strong>
|
| 370 |
+
</td>
|
| 371 |
+
</tr>
|
| 372 |
+
<tr>
|
| 373 |
+
<td><strong>Multilingual</strong>
|
| 374 |
+
</td>
|
| 375 |
+
<td>MGSM (0-shot)
|
| 376 |
+
</td>
|
| 377 |
+
<td>22.10
|
| 378 |
+
</td>
|
| 379 |
+
<td>
|
| 380 |
+
</td>
|
| 381 |
+
<td>
|
| 382 |
+
</td>
|
| 383 |
+
</tr>
|
| 384 |
+
<tr>
|
| 385 |
+
<td rowspan="6" ><strong>Reasoning<br>(generation)</strong>
|
| 386 |
+
</td>
|
| 387 |
+
<td>AIME 2024
|
| 388 |
+
</td>
|
| 389 |
+
<td>43.96
|
| 390 |
+
</td>
|
| 391 |
+
<td>40.10
|
| 392 |
+
</td>
|
| 393 |
+
<td>91.2%
|
| 394 |
+
</td>
|
| 395 |
+
</tr>
|
| 396 |
+
<tr>
|
| 397 |
+
<td>AIME 2025
|
| 398 |
+
</td>
|
| 399 |
+
<td>32.29
|
| 400 |
+
</td>
|
| 401 |
+
<td>32.29
|
| 402 |
+
</td>
|
| 403 |
+
<td>100.0%
|
| 404 |
+
</td>
|
| 405 |
+
</tr>
|
| 406 |
+
<tr>
|
| 407 |
+
<td>GPQA diamond
|
| 408 |
+
</td>
|
| 409 |
+
<td>38.38
|
| 410 |
+
</td>
|
| 411 |
+
<td>38.89
|
| 412 |
+
</td>
|
| 413 |
+
<td>101.3%
|
| 414 |
+
</td>
|
| 415 |
+
</tr>
|
| 416 |
+
<tr>
|
| 417 |
+
<td>Math-lvl-5
|
| 418 |
+
</td>
|
| 419 |
+
<td>89.00
|
| 420 |
+
</td>
|
| 421 |
+
<td>88.80
|
| 422 |
+
</td>
|
| 423 |
+
<td>99.8%
|
| 424 |
+
</td>
|
| 425 |
+
</tr>
|
| 426 |
+
<tr>
|
| 427 |
+
<td>LiveCodeBench
|
| 428 |
+
</td>
|
| 429 |
+
<td>33.44
|
| 430 |
+
</td>
|
| 431 |
+
<td>
|
| 432 |
+
</td>
|
| 433 |
+
<td>
|
| 434 |
+
</td>
|
| 435 |
+
</tr>
|
| 436 |
</table>
|