Update README.md
Browse files
README.md
CHANGED
@@ -1,4 +1,27 @@
|
|
1 |
---
|
2 |
license: mit
|
3 |
---
|
4 |
-
This is the ONNX variant of the [bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) model for embeddings.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: mit
|
3 |
---
|
4 |
+
This is the ONNX variant of the [bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) model for embeddings created with the DeepSparse Optimum integration.
|
5 |
+
|
6 |
+
To replicate:
|
7 |
+
|
8 |
+
```bash
|
9 |
+
pip install git+https://github.com/neuralmagic/optimum-deepsparse.git
|
10 |
+
```
|
11 |
+
|
12 |
+
```python
|
13 |
+
from optimum.deepsparse import DeepSparseModelForFeatureExtraction
|
14 |
+
from transformers.onnx.utils import get_preprocessor
|
15 |
+
from pathlib import Path
|
16 |
+
|
17 |
+
model_id = "BAAI/bge-small-en-v1.5"
|
18 |
+
|
19 |
+
# load model and convert to onnx
|
20 |
+
model = DeepSparseModelForFeatureExtraction.from_pretrained(model_id, export=True)
|
21 |
+
tokenizer = get_preprocessor(model_id)
|
22 |
+
|
23 |
+
# save onnx checkpoint and tokenizer
|
24 |
+
onnx_path = Path(f"dense-bge-small-en-v1.5")
|
25 |
+
model.save_pretrained(onnx_path)
|
26 |
+
tokenizer.save_pretrained(onnx_path)
|
27 |
+
```
|