|
|
|
from typing import Dict |
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
from peft import PeftModel, PeftConfig |
|
|
|
class EndpointHandler: |
|
def __init__(self, path=""): |
|
|
|
self.peft_config = PeftConfig.from_pretrained(path) |
|
|
|
|
|
self.tokenizer = AutoTokenizer.from_pretrained( |
|
self.peft_config.base_model_name_or_path, |
|
use_fast=False |
|
) |
|
|
|
|
|
base_model = AutoModelForCausalLM.from_pretrained( |
|
self.peft_config.base_model_name_or_path, |
|
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32, |
|
device_map="auto" |
|
) |
|
|
|
|
|
self.model = PeftModel.from_pretrained(base_model, path) |
|
self.model.eval() |
|
|
|
def __call__(self, data: Dict[str, str]) -> Dict[str, str]: |
|
|
|
if "messages" in data: |
|
messages = data["messages"] |
|
prompt = self.tokenizer.apply_chat_template( |
|
messages, |
|
tokenize=False, |
|
add_generation_prompt=True |
|
) |
|
else: |
|
user_input = data.get("inputs", "") |
|
if not user_input: |
|
return {"error": "No input provided."} |
|
messages = [{"role": "user", "content": user_input}] |
|
prompt = self.tokenizer.apply_chat_template( |
|
messages, |
|
tokenize=False, |
|
add_generation_prompt=True |
|
) |
|
|
|
|
|
inputs = self.tokenizer(prompt, return_tensors="pt").to(self.model.device) |
|
|
|
|
|
with torch.no_grad(): |
|
output_ids = self.model.generate( |
|
**inputs, |
|
max_new_tokens=512, |
|
temperature=0.7, |
|
top_p=0.9, |
|
do_sample=True, |
|
pad_token_id=self.tokenizer.eos_token_id |
|
) |
|
|
|
|
|
output_text = self.tokenizer.decode(output_ids[0], skip_special_tokens=True) |
|
return {"generated_text": output_text} |
|
|
|
|