File size: 12,237 Bytes
ffaf0d2 04a2208 ffaf0d2 04a2208 ffaf0d2 04a2208 ffaf0d2 04a2208 ffaf0d2 04a2208 ffaf0d2 04a2208 ffaf0d2 04a2208 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 |
import torch
import torch.nn as nn
import torch.nn.functional as F
from audiotools import AudioSignal, STFTParams
from audiotools import ml
from einops import rearrange
from torch.nn.utils import weight_norm
import torchaudio
import nnAudio.features as features
from munch import Munch
BANDS = [(0.0, 0.1), (0.1, 0.25), (0.25, 0.5), (0.5, 0.75), (0.75, 1.0)]
def WNConv1d(*args, **kwargs):
act = kwargs.pop("act", True)
conv = weight_norm(nn.Conv1d(*args, **kwargs))
if not act:
return conv
return nn.Sequential(conv, nn.LeakyReLU(0.1))
def WNConv2d(*args, **kwargs):
act = kwargs.pop("act", True)
conv = weight_norm(nn.Conv2d(*args, **kwargs))
if not act:
return conv
return nn.Sequential(conv, nn.LeakyReLU(0.1))
def get_padding(kernel_size, dilation=1):
return int((kernel_size * dilation - dilation) / 2)
def get_2d_padding(kernel_size, dilation=(1, 1)):
return (int((kernel_size[0] * dilation[0] - dilation[0]) / 2),
int((kernel_size[1] * dilation[1] - dilation[1]) / 2))
class NormConv2d(nn.Module):
"""Conv2d with normalization"""
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
padding=0, dilation=1, groups=1, bias=True, norm="weight_norm"):
super().__init__()
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size,
stride, padding, dilation, groups, bias)
if norm == "weight_norm":
self.conv = weight_norm(self.conv)
def forward(self, x):
return self.conv(x)
class MPD(nn.Module):
def __init__(self, period):
super().__init__()
self.period = period
self.convs = nn.ModuleList([
WNConv2d(1, 32, (5, 1), (3, 1), padding=(2, 0)),
WNConv2d(32, 128, (5, 1), (3, 1), padding=(2, 0)),
WNConv2d(128, 512, (5, 1), (3, 1), padding=(2, 0)),
WNConv2d(512, 1024, (5, 1), (3, 1), padding=(2, 0)),
WNConv2d(1024, 1024, (5, 1), 1, padding=(2, 0)),
])
self.conv_post = WNConv2d(1024, 1, kernel_size=(3, 1), padding=(1, 0), act=False)
def pad_to_period(self, x):
t = x.shape[-1]
x = F.pad(x, (0, self.period - t % self.period), mode="reflect")
return x
def forward(self, x):
fmap = []
x = self.pad_to_period(x)
x = rearrange(x, "b c (l p) -> b c l p", p=self.period)
for layer in self.convs:
x = layer(x)
fmap.append(x)
x = self.conv_post(x)
fmap.append(x)
return fmap
class MSD(nn.Module):
def __init__(self, rate: int = 1, sample_rate: int = 24000):
super().__init__()
self.convs = nn.ModuleList([
WNConv1d(1, 16, 15, 1, padding=7),
WNConv1d(16, 64, 41, 4, groups=4, padding=20),
WNConv1d(64, 256, 41, 4, groups=16, padding=20),
WNConv1d(256, 1024, 41, 4, groups=64, padding=20),
WNConv1d(1024, 1024, 41, 4, groups=256, padding=20),
WNConv1d(1024, 1024, 5, 1, padding=2),
])
self.conv_post = WNConv1d(1024, 1, 3, 1, padding=1, act=False)
self.sample_rate = sample_rate
self.rate = rate
def forward(self, x):
x = AudioSignal(x, self.sample_rate)
x.resample(self.sample_rate // self.rate)
x = x.audio_data
fmap = []
for l in self.convs:
x = l(x)
fmap.append(x)
x = self.conv_post(x)
fmap.append(x)
return fmap
class DiscriminatorCQT(nn.Module):
def __init__(self, cfg, hop_length, n_octaves, bins_per_octave):
super().__init__()
self.cfg = cfg
self.filters = cfg.filters
self.max_filters = cfg.max_filters
self.filters_scale = cfg.filters_scale
self.kernel_size = (3, 9)
self.dilations = cfg.dilations
self.stride = (1, 2)
self.in_channels = cfg.in_channels
self.out_channels = cfg.out_channels
self.fs = cfg.sampling_rate
self.hop_length = hop_length
self.n_octaves = n_octaves
self.bins_per_octave = bins_per_octave
self.cqt_transform = features.cqt.CQT2010v2(
sr=self.fs * 2,
hop_length=self.hop_length,
n_bins=self.bins_per_octave * self.n_octaves,
bins_per_octave=self.bins_per_octave,
output_format="Complex",
pad_mode="constant",
)
self.conv_pres = nn.ModuleList()
for i in range(self.n_octaves):
self.conv_pres.append(
NormConv2d(
self.in_channels * 2, # Real + Imaginary
self.in_channels * 2,
kernel_size=self.kernel_size,
padding=get_2d_padding(self.kernel_size),
norm="weight_norm",
)
)
self.convs = nn.ModuleList()
self.convs.append(
NormConv2d(
self.in_channels * 2,
self.filters,
kernel_size=self.kernel_size,
padding=get_2d_padding(self.kernel_size),
)
)
in_chs = min(self.filters_scale * self.filters, self.max_filters)
for i, dilation in enumerate(self.dilations):
out_chs = min((self.filters_scale ** (i + 1)) * self.filters, self.max_filters)
self.convs.append(
NormConv2d(
in_chs,
out_chs,
kernel_size=self.kernel_size,
stride=self.stride,
dilation=(dilation, 1),
padding=get_2d_padding(self.kernel_size, (dilation, 1)),
norm="weight_norm",
)
)
in_chs = out_chs
out_chs = min(
(self.filters_scale ** (len(self.dilations) + 1)) * self.filters,
self.max_filters,
)
self.convs.append(
NormConv2d(
in_chs,
out_chs,
kernel_size=(self.kernel_size[0], self.kernel_size[0]),
padding=get_2d_padding((self.kernel_size[0], self.kernel_size[0])),
norm="weight_norm",
)
)
self.conv_post = NormConv2d(
out_chs,
self.out_channels,
kernel_size=(self.kernel_size[0], self.kernel_size[0]),
padding=get_2d_padding((self.kernel_size[0], self.kernel_size[0])),
norm="weight_norm",
)
self.activation = torch.nn.LeakyReLU(negative_slope=0.1)
self.resample = torchaudio.transforms.Resample(
orig_freq=self.fs, new_freq=self.fs * 2
)
def forward(self, x):
fmap = []
x = self.resample(x)
z = self.cqt_transform(x)
z_amplitude = z[:, :, :, 0].unsqueeze(1)
z_phase = z[:, :, :, 1].unsqueeze(1)
z = torch.cat([z_amplitude, z_phase], dim=1)
z = rearrange(z, "b c w t -> b c t w")
latent_z = []
for i in range(self.n_octaves):
octave_band = z[:, :, :, i * self.bins_per_octave : (i + 1) * self.bins_per_octave]
processed_band = self.conv_pres[i](octave_band)
latent_z.append(processed_band)
latent_z = torch.cat(latent_z, dim=-1)
for i, l in enumerate(self.convs):
latent_z = l(latent_z)
latent_z = self.activation(latent_z)
fmap.append(latent_z)
latent_z = self.conv_post(latent_z)
fmap.append(latent_z)
return fmap
class MultiScaleSubbandCQT(nn.Module):
"""CQT discriminator at multiple scales"""
def __init__(self, sample_rate=24000):
super().__init__()
cfg = Munch({
"hop_lengths": [512, 256, 256],
"sampling_rate": 24000,
"filters": 32,
"max_filters": 1024,
"filters_scale": 1,
"dilations": [1, 2, 4],
"in_channels": 1,
"out_channels": 1,
"n_octaves": [9, 9, 9],
"bins_per_octaves": [24, 36, 48],
})
self.cfg = cfg
self.discriminators = nn.ModuleList([
DiscriminatorCQT(
cfg,
hop_length=cfg.hop_lengths[i],
n_octaves=cfg.n_octaves[i],
bins_per_octave=cfg.bins_per_octaves[i],
)
for i in range(len(cfg.hop_lengths))
])
def forward(self, x):
fmap = []
for disc in self.discriminators:
fmap.extend(disc(x))
return fmap
BANDS = [(0.0, 0.1), (0.1, 0.25), (0.25, 0.5), (0.5, 0.75), (0.75, 1.0)]
class MRD(nn.Module):
def __init__(self, window_length: int, hop_factor: float = 0.25,
sample_rate: int = 24000, bands: list = BANDS):
"""Multi-resolution spectrogram discriminator."""
super().__init__()
self.window_length = window_length
self.hop_factor = hop_factor
self.sample_rate = sample_rate
self.stft_params = STFTParams(
window_length=window_length,
hop_length=int(window_length * hop_factor),
match_stride=True,
)
n_fft = window_length // 2 + 1
bands = [(int(b[0] * n_fft), int(b[1] * n_fft)) for b in bands]
self.bands = bands
ch = 32
convs = lambda: nn.ModuleList([
WNConv2d(2, ch, (3, 9), (1, 1), padding=(1, 4)),
WNConv2d(ch, ch, (3, 9), (1, 2), padding=(1, 4)),
WNConv2d(ch, ch, (3, 9), (1, 2), padding=(1, 4)),
WNConv2d(ch, ch, (3, 9), (1, 2), padding=(1, 4)),
WNConv2d(ch, ch, (3, 3), (1, 1), padding=(1, 1)),
])
self.band_convs = nn.ModuleList([convs() for _ in range(len(self.bands))])
self.conv_post = WNConv2d(ch, 1, (3, 3), (1, 1), padding=(1, 1), act=False)
def spectrogram(self, x):
x = AudioSignal(x, self.sample_rate, stft_params=self.stft_params)
x = torch.view_as_real(x.stft())
x = rearrange(x, "b 1 f t c -> (b 1) c t f")
x_bands = [x[..., b[0] : b[1]] for b in self.bands]
return x_bands
def forward(self, x):
x_bands = self.spectrogram(x)
fmap = []
x = []
for band, stack in zip(x_bands, self.band_convs):
for layer in stack:
band = layer(band)
fmap.append(band)
x.append(band)
x = torch.cat(x, dim=-1)
x = self.conv_post(x)
fmap.append(x)
return fmap
class Discriminator(ml.BaseModel):
def __init__(
self,
rates: list = [],
periods: list = [2, 3, 5, 7, 11],
fft_sizes: list = [2048, 1024, 512],
sample_rate: int = 24000,
):
"""Discriminator combining MPD, MSD, MRD and CQT.
Parameters
----------
rates : list, optional
Sampling rates for MSD, by default []
periods : list, optional
Periods for MPD, by default [2, 3, 5, 7, 11]
fft_sizes : list, optional
FFT sizes for MRD, by default [2048, 1024, 512]
sample_rate : int, optional
Sampling rate of audio in Hz, by default 24000
"""
super().__init__()
discs = []
# Time-domain discriminators
discs += [MPD(p) for p in periods]
discs += [MSD(r, sample_rate=sample_rate) for r in rates]
# Frequency-domain discriminators (both STFT and CQT)
discs += [MRD(f, sample_rate=sample_rate) for f in fft_sizes]
discs += [MultiScaleSubbandCQT(sample_rate=sample_rate)]
self.discriminators = nn.ModuleList(discs)
def preprocess(self, y):
# Remove DC offset
y = y - y.mean(dim=-1, keepdims=True)
# Peak normalize
y = 0.8 * y / (y.abs().max(dim=-1, keepdim=True)[0] + 1e-9)
return y
def forward(self, x):
x = self.preprocess(x)
fmaps = [d(x) for d in self.discriminators]
return fmaps
|