File size: 12,237 Bytes
ffaf0d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
04a2208
ffaf0d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
04a2208
ffaf0d2
 
04a2208
 
 
 
 
 
 
 
 
 
ffaf0d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
04a2208
ffaf0d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
04a2208
ffaf0d2
 
 
 
 
 
 
 
 
 
 
 
04a2208
ffaf0d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
04a2208
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
import torch
import torch.nn as nn
import torch.nn.functional as F
from audiotools import AudioSignal, STFTParams
from audiotools import ml
from einops import rearrange
from torch.nn.utils import weight_norm
import torchaudio
import nnAudio.features as features
from munch import Munch


BANDS = [(0.0, 0.1), (0.1, 0.25), (0.25, 0.5), (0.5, 0.75), (0.75, 1.0)]


def WNConv1d(*args, **kwargs):
    act = kwargs.pop("act", True)
    conv = weight_norm(nn.Conv1d(*args, **kwargs))
    if not act:
        return conv
    return nn.Sequential(conv, nn.LeakyReLU(0.1))


def WNConv2d(*args, **kwargs):
    act = kwargs.pop("act", True)
    conv = weight_norm(nn.Conv2d(*args, **kwargs))
    if not act:
        return conv
    return nn.Sequential(conv, nn.LeakyReLU(0.1))


def get_padding(kernel_size, dilation=1):
    return int((kernel_size * dilation - dilation) / 2)


def get_2d_padding(kernel_size, dilation=(1, 1)):
    return (int((kernel_size[0] * dilation[0] - dilation[0]) / 2),
            int((kernel_size[1] * dilation[1] - dilation[1]) / 2))


class NormConv2d(nn.Module):
    """Conv2d with normalization"""
    def __init__(self, in_channels, out_channels, kernel_size, stride=1, 
                 padding=0, dilation=1, groups=1, bias=True, norm="weight_norm"):
        super().__init__()
        self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, 
                             stride, padding, dilation, groups, bias)
        if norm == "weight_norm":
            self.conv = weight_norm(self.conv)
    
    def forward(self, x):
        return self.conv(x)


class MPD(nn.Module):
    def __init__(self, period):
        super().__init__()
        self.period = period
        self.convs = nn.ModuleList([
            WNConv2d(1, 32, (5, 1), (3, 1), padding=(2, 0)),
            WNConv2d(32, 128, (5, 1), (3, 1), padding=(2, 0)),
            WNConv2d(128, 512, (5, 1), (3, 1), padding=(2, 0)),
            WNConv2d(512, 1024, (5, 1), (3, 1), padding=(2, 0)),
            WNConv2d(1024, 1024, (5, 1), 1, padding=(2, 0)),
        ])
        self.conv_post = WNConv2d(1024, 1, kernel_size=(3, 1), padding=(1, 0), act=False)

    def pad_to_period(self, x):
        t = x.shape[-1]
        x = F.pad(x, (0, self.period - t % self.period), mode="reflect")
        return x

    def forward(self, x):
        fmap = []
        x = self.pad_to_period(x)
        x = rearrange(x, "b c (l p) -> b c l p", p=self.period)

        for layer in self.convs:
            x = layer(x)
            fmap.append(x)

        x = self.conv_post(x)
        fmap.append(x)
        return fmap


class MSD(nn.Module):
    def __init__(self, rate: int = 1, sample_rate: int = 24000):
        super().__init__()
        self.convs = nn.ModuleList([
            WNConv1d(1, 16, 15, 1, padding=7),
            WNConv1d(16, 64, 41, 4, groups=4, padding=20),
            WNConv1d(64, 256, 41, 4, groups=16, padding=20),
            WNConv1d(256, 1024, 41, 4, groups=64, padding=20),
            WNConv1d(1024, 1024, 41, 4, groups=256, padding=20),
            WNConv1d(1024, 1024, 5, 1, padding=2),
        ])
        self.conv_post = WNConv1d(1024, 1, 3, 1, padding=1, act=False)
        self.sample_rate = sample_rate
        self.rate = rate

    def forward(self, x):
        x = AudioSignal(x, self.sample_rate)
        x.resample(self.sample_rate // self.rate)
        x = x.audio_data

        fmap = []
        for l in self.convs:
            x = l(x)
            fmap.append(x)
        x = self.conv_post(x)
        fmap.append(x)
        return fmap


class DiscriminatorCQT(nn.Module):
    def __init__(self, cfg, hop_length, n_octaves, bins_per_octave):
        super().__init__()
        self.cfg = cfg
        self.filters = cfg.filters
        self.max_filters = cfg.max_filters
        self.filters_scale = cfg.filters_scale
        self.kernel_size = (3, 9)
        self.dilations = cfg.dilations
        self.stride = (1, 2)
        self.in_channels = cfg.in_channels
        self.out_channels = cfg.out_channels
        self.fs = cfg.sampling_rate
        self.hop_length = hop_length
        self.n_octaves = n_octaves
        self.bins_per_octave = bins_per_octave

        self.cqt_transform = features.cqt.CQT2010v2(
            sr=self.fs * 2,
            hop_length=self.hop_length,
            n_bins=self.bins_per_octave * self.n_octaves,
            bins_per_octave=self.bins_per_octave,
            output_format="Complex",
            pad_mode="constant",
        )

        self.conv_pres = nn.ModuleList()
        for i in range(self.n_octaves):
            self.conv_pres.append(
                NormConv2d(
                    self.in_channels * 2,  # Real + Imaginary
                    self.in_channels * 2,
                    kernel_size=self.kernel_size,
                    padding=get_2d_padding(self.kernel_size),
                    norm="weight_norm",
                )
            )

        self.convs = nn.ModuleList()
        self.convs.append(
            NormConv2d(
                self.in_channels * 2,
                self.filters,
                kernel_size=self.kernel_size,
                padding=get_2d_padding(self.kernel_size),
            )
        )

        in_chs = min(self.filters_scale * self.filters, self.max_filters)
        for i, dilation in enumerate(self.dilations):
            out_chs = min((self.filters_scale ** (i + 1)) * self.filters, self.max_filters)
            self.convs.append(
                NormConv2d(
                    in_chs,
                    out_chs,
                    kernel_size=self.kernel_size,
                    stride=self.stride,
                    dilation=(dilation, 1),
                    padding=get_2d_padding(self.kernel_size, (dilation, 1)),
                    norm="weight_norm",
                )
            )
            in_chs = out_chs
            
        out_chs = min(
            (self.filters_scale ** (len(self.dilations) + 1)) * self.filters,
            self.max_filters,
        )
        self.convs.append(
            NormConv2d(
                in_chs,
                out_chs,
                kernel_size=(self.kernel_size[0], self.kernel_size[0]),
                padding=get_2d_padding((self.kernel_size[0], self.kernel_size[0])),
                norm="weight_norm",
            )
        )

        self.conv_post = NormConv2d(
            out_chs,
            self.out_channels,
            kernel_size=(self.kernel_size[0], self.kernel_size[0]),
            padding=get_2d_padding((self.kernel_size[0], self.kernel_size[0])),
            norm="weight_norm",
        )

        self.activation = torch.nn.LeakyReLU(negative_slope=0.1)
        self.resample = torchaudio.transforms.Resample(
            orig_freq=self.fs, new_freq=self.fs * 2
        )

    def forward(self, x):
        fmap = []
        x = self.resample(x)
        z = self.cqt_transform(x)
        

        z_amplitude = z[:, :, :, 0].unsqueeze(1)
        z_phase = z[:, :, :, 1].unsqueeze(1)
        z = torch.cat([z_amplitude, z_phase], dim=1)
        z = rearrange(z, "b c w t -> b c t w")

        latent_z = []
        for i in range(self.n_octaves):
            octave_band = z[:, :, :, i * self.bins_per_octave : (i + 1) * self.bins_per_octave]
            processed_band = self.conv_pres[i](octave_band)
            latent_z.append(processed_band)
        latent_z = torch.cat(latent_z, dim=-1)

        for i, l in enumerate(self.convs):
            latent_z = l(latent_z)
            latent_z = self.activation(latent_z)
            fmap.append(latent_z)

        latent_z = self.conv_post(latent_z)
        fmap.append(latent_z)
        
        return fmap


class MultiScaleSubbandCQT(nn.Module):
    """CQT discriminator at multiple scales"""
    def __init__(self, sample_rate=24000):
        super().__init__()
        cfg = Munch({
                "hop_lengths": [512, 256, 256],
                "sampling_rate": 24000,
                "filters": 32,
                "max_filters": 1024,
                "filters_scale": 1,
                "dilations": [1, 2, 4],
                "in_channels": 1,
                "out_channels": 1,
                "n_octaves": [9, 9, 9],
                "bins_per_octaves": [24, 36, 48],
        })
        self.cfg = cfg
        self.discriminators = nn.ModuleList([
            DiscriminatorCQT(
                cfg,
                hop_length=cfg.hop_lengths[i],
                n_octaves=cfg.n_octaves[i],
                bins_per_octave=cfg.bins_per_octaves[i],
            )
            for i in range(len(cfg.hop_lengths))
        ])

    def forward(self, x):
        fmap = []
        for disc in self.discriminators:
            fmap.extend(disc(x))
        return fmap


BANDS = [(0.0, 0.1), (0.1, 0.25), (0.25, 0.5), (0.5, 0.75), (0.75, 1.0)]

class MRD(nn.Module):
    def __init__(self, window_length: int, hop_factor: float = 0.25, 
                 sample_rate: int = 24000, bands: list = BANDS):
        """Multi-resolution spectrogram discriminator."""
        super().__init__()
        self.window_length = window_length
        self.hop_factor = hop_factor
        self.sample_rate = sample_rate
        self.stft_params = STFTParams(
            window_length=window_length,
            hop_length=int(window_length * hop_factor),
            match_stride=True,
        )

        n_fft = window_length // 2 + 1
        bands = [(int(b[0] * n_fft), int(b[1] * n_fft)) for b in bands]
        self.bands = bands

        ch = 32
        convs = lambda: nn.ModuleList([
            WNConv2d(2, ch, (3, 9), (1, 1), padding=(1, 4)),
            WNConv2d(ch, ch, (3, 9), (1, 2), padding=(1, 4)),
            WNConv2d(ch, ch, (3, 9), (1, 2), padding=(1, 4)),
            WNConv2d(ch, ch, (3, 9), (1, 2), padding=(1, 4)),
            WNConv2d(ch, ch, (3, 3), (1, 1), padding=(1, 1)),
        ])
        self.band_convs = nn.ModuleList([convs() for _ in range(len(self.bands))])
        self.conv_post = WNConv2d(ch, 1, (3, 3), (1, 1), padding=(1, 1), act=False)

    def spectrogram(self, x):
        x = AudioSignal(x, self.sample_rate, stft_params=self.stft_params)
        x = torch.view_as_real(x.stft())
        x = rearrange(x, "b 1 f t c -> (b 1) c t f")
        x_bands = [x[..., b[0] : b[1]] for b in self.bands]
        return x_bands

    def forward(self, x):
        x_bands = self.spectrogram(x)
        fmap = []

        x = []
        for band, stack in zip(x_bands, self.band_convs):
            for layer in stack:
                band = layer(band)
                fmap.append(band)
            x.append(band)

        x = torch.cat(x, dim=-1)
        x = self.conv_post(x)
        fmap.append(x)
        return fmap


class Discriminator(ml.BaseModel):
    def __init__(
        self,
        rates: list = [],
        periods: list = [2, 3, 5, 7, 11],
        fft_sizes: list = [2048, 1024, 512],
        sample_rate: int = 24000,
    ):
        """Discriminator combining MPD, MSD, MRD and CQT.
        
        Parameters
        ----------
        rates : list, optional
            Sampling rates for MSD, by default []
        periods : list, optional
            Periods for MPD, by default [2, 3, 5, 7, 11]
        fft_sizes : list, optional
            FFT sizes for MRD, by default [2048, 1024, 512]
        sample_rate : int, optional
            Sampling rate of audio in Hz, by default 24000
        """
        super().__init__()
        discs = []
        # Time-domain discriminators
        discs += [MPD(p) for p in periods]
        discs += [MSD(r, sample_rate=sample_rate) for r in rates]
        
        # Frequency-domain discriminators (both STFT and CQT)
        discs += [MRD(f, sample_rate=sample_rate) for f in fft_sizes]
        discs += [MultiScaleSubbandCQT(sample_rate=sample_rate)]
            
        self.discriminators = nn.ModuleList(discs)

    def preprocess(self, y):
        # Remove DC offset
        y = y - y.mean(dim=-1, keepdims=True)
        # Peak normalize
        y = 0.8 * y / (y.abs().max(dim=-1, keepdim=True)[0] + 1e-9)
        return y

    def forward(self, x):
        x = self.preprocess(x)
        fmaps = [d(x) for d in self.discriminators]
        return fmaps