File size: 19,635 Bytes
ffaf0d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
# import torch
# import torch.nn as nn
# import torch.nn.functional as F
# from audiotools import AudioSignal
# from audiotools import ml
# from audiotools import STFTParams
# from einops import rearrange
# from torch.nn.utils import weight_norm


# def WNConv1d(*args, **kwargs):
#     act = kwargs.pop("act", True)
#     conv = weight_norm(nn.Conv1d(*args, **kwargs))
#     if not act:
#         return conv
#     return nn.Sequential(conv, nn.LeakyReLU(0.1))


# def WNConv2d(*args, **kwargs):
#     act = kwargs.pop("act", True)
#     conv = weight_norm(nn.Conv2d(*args, **kwargs))
#     if not act:
#         return conv
#     return nn.Sequential(conv, nn.LeakyReLU(0.1))


# class MPD(nn.Module):
#     def __init__(self, period):
#         super().__init__()
#         self.period = period
#         self.convs = nn.ModuleList(
#             [
#                 WNConv2d(1, 32, (5, 1), (3, 1), padding=(2, 0)),
#                 WNConv2d(32, 128, (5, 1), (3, 1), padding=(2, 0)),
#                 WNConv2d(128, 512, (5, 1), (3, 1), padding=(2, 0)),
#                 WNConv2d(512, 1024, (5, 1), (3, 1), padding=(2, 0)),
#                 WNConv2d(1024, 1024, (5, 1), 1, padding=(2, 0)),
#             ]
#         )
#         self.conv_post = WNConv2d(
#             1024, 1, kernel_size=(3, 1), padding=(1, 0), act=False
#         )

#     def pad_to_period(self, x):
#         t = x.shape[-1]
#         x = F.pad(x, (0, self.period - t % self.period), mode="reflect")
#         return x

#     def forward(self, x):
#         fmap = []

#         x = self.pad_to_period(x)
#         x = rearrange(x, "b c (l p) -> b c l p", p=self.period)

#         for layer in self.convs:
#             x = layer(x)
#             fmap.append(x)

#         x = self.conv_post(x)
#         fmap.append(x)

#         return fmap


# class MSD(nn.Module):
#     def __init__(self, rate: int = 1, sample_rate: int = 44100):
#         super().__init__()
#         self.convs = nn.ModuleList(
#             [
#                 WNConv1d(1, 16, 15, 1, padding=7),
#                 WNConv1d(16, 64, 41, 4, groups=4, padding=20),
#                 WNConv1d(64, 256, 41, 4, groups=16, padding=20),
#                 WNConv1d(256, 1024, 41, 4, groups=64, padding=20),
#                 WNConv1d(1024, 1024, 41, 4, groups=256, padding=20),
#                 WNConv1d(1024, 1024, 5, 1, padding=2),
#             ]
#         )
#         self.conv_post = WNConv1d(1024, 1, 3, 1, padding=1, act=False)
#         self.sample_rate = sample_rate
#         self.rate = rate

#     def forward(self, x):
#         x = AudioSignal(x, self.sample_rate)
#         x.resample(self.sample_rate // self.rate)
#         x = x.audio_data

#         fmap = []

#         for l in self.convs:
#             x = l(x)
#             fmap.append(x)
#         x = self.conv_post(x)
#         fmap.append(x)

#         return fmap


# BANDS = [(0.0, 0.1), (0.1, 0.25), (0.25, 0.5), (0.5, 0.75), (0.75, 1.0)]


# class MRD(nn.Module):
#     def __init__(
#         self,
#         window_length: int,
#         hop_factor: float = 0.25,
#         sample_rate: int = 44100,
#         bands: list = BANDS,
#     ):
#         """Complex multi-band spectrogram discriminator.
#         Parameters
#         ----------
#         window_length : int
#             Window length of STFT.
#         hop_factor : float, optional
#             Hop factor of the STFT, defaults to ``0.25 * window_length``.
#         sample_rate : int, optional
#             Sampling rate of audio in Hz, by default 44100
#         bands : list, optional
#             Bands to run discriminator over.
#         """
#         super().__init__()

#         self.window_length = window_length
#         self.hop_factor = hop_factor
#         self.sample_rate = sample_rate
#         self.stft_params = STFTParams(
#             window_length=window_length,
#             hop_length=int(window_length * hop_factor),
#             match_stride=True,
#         )

#         n_fft = window_length // 2 + 1
#         bands = [(int(b[0] * n_fft), int(b[1] * n_fft)) for b in bands]
#         self.bands = bands

#         ch = 32
#         convs = lambda: nn.ModuleList(
#             [
#                 WNConv2d(2, ch, (3, 9), (1, 1), padding=(1, 4)),
#                 WNConv2d(ch, ch, (3, 9), (1, 2), padding=(1, 4)),
#                 WNConv2d(ch, ch, (3, 9), (1, 2), padding=(1, 4)),
#                 WNConv2d(ch, ch, (3, 9), (1, 2), padding=(1, 4)),
#                 WNConv2d(ch, ch, (3, 3), (1, 1), padding=(1, 1)),
#             ]
#         )
#         self.band_convs = nn.ModuleList([convs() for _ in range(len(self.bands))])
#         self.conv_post = WNConv2d(ch, 1, (3, 3), (1, 1), padding=(1, 1), act=False)

#     def spectrogram(self, x):
#         x = AudioSignal(x, self.sample_rate, stft_params=self.stft_params)
#         x = torch.view_as_real(x.stft())
#         x = rearrange(x, "b 1 f t c -> (b 1) c t f")
#         # Split into bands
#         x_bands = [x[..., b[0] : b[1]] for b in self.bands]
#         return x_bands

#     def forward(self, x):
#         x_bands = self.spectrogram(x)
#         fmap = []

#         x = []
#         for band, stack in zip(x_bands, self.band_convs):
#             for layer in stack:
#                 band = layer(band)
#                 fmap.append(band)
#             x.append(band)

#         x = torch.cat(x, dim=-1)
#         x = self.conv_post(x)
#         fmap.append(x)

#         return fmap


# class Discriminator(ml.BaseModel):
#     def __init__(
#         self,
#         rates: list = [],
#         periods: list = [2, 3, 5, 7, 11],
#         fft_sizes: list = [2048, 1024, 512],
#         sample_rate: int = 44100,
#         bands: list = BANDS,
#     ):
#         """Discriminator that combines multiple discriminators.

#         Parameters
#         ----------
#         rates : list, optional
#             sampling rates (in Hz) to run MSD at, by default []
#             If empty, MSD is not used.
#         periods : list, optional
#             periods (of samples) to run MPD at, by default [2, 3, 5, 7, 11]
#         fft_sizes : list, optional
#             Window sizes of the FFT to run MRD at, by default [2048, 1024, 512]
#         sample_rate : int, optional
#             Sampling rate of audio in Hz, by default 44100
#         bands : list, optional
#             Bands to run MRD at, by default `BANDS`
#         """
#         super().__init__()
#         discs = []
#         discs += [MPD(p) for p in periods]
#         discs += [MSD(r, sample_rate=sample_rate) for r in rates]
#         discs += [MRD(f, sample_rate=sample_rate, bands=bands) for f in fft_sizes]
#         self.discriminators = nn.ModuleList(discs)

#     def preprocess(self, y):
#         # Remove DC offset
#         y = y - y.mean(dim=-1, keepdims=True)
#         # Peak normalize the volume of input audio
#         y = 0.8 * y / (y.abs().max(dim=-1, keepdim=True)[0] + 1e-9)
#         return y

#     def forward(self, x):
#         x = self.preprocess(x)
#         fmaps = [d(x) for d in self.discriminators]
#         return fmaps


# if __name__ == "__main__":
#     disc = Discriminator()
#     x = torch.zeros(1, 1, 44100)
#     results = disc(x)
#     for i, result in enumerate(results):
#         print(f"disc{i}")
#         for i, r in enumerate(result):
#             print(r.shape, r.mean(), r.min(), r.max())
#         print()
import torch
import torch.nn as nn
import torch.nn.functional as F
from audiotools import AudioSignal, STFTParams
from audiotools import ml
from einops import rearrange
from torch.nn.utils import weight_norm
import torchaudio
import nnAudio.features as features
from munch import Munch


BANDS = [(0.0, 0.1), (0.1, 0.25), (0.25, 0.5), (0.5, 0.75), (0.75, 1.0)]


def WNConv1d(*args, **kwargs):
    act = kwargs.pop("act", True)
    conv = weight_norm(nn.Conv1d(*args, **kwargs))
    if not act:
        return conv
    return nn.Sequential(conv, nn.LeakyReLU(0.1))


def WNConv2d(*args, **kwargs):
    act = kwargs.pop("act", True)
    conv = weight_norm(nn.Conv2d(*args, **kwargs))
    if not act:
        return conv
    return nn.Sequential(conv, nn.LeakyReLU(0.1))


def get_padding(kernel_size, dilation=1):
    return int((kernel_size * dilation - dilation) / 2)


def get_2d_padding(kernel_size, dilation=(1, 1)):
    return (int((kernel_size[0] * dilation[0] - dilation[0]) / 2),
            int((kernel_size[1] * dilation[1] - dilation[1]) / 2))


class NormConv2d(nn.Module):
    """Conv2d with normalization"""
    def __init__(self, in_channels, out_channels, kernel_size, stride=1, 
                 padding=0, dilation=1, groups=1, bias=True, norm="weight_norm"):
        super().__init__()
        self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, 
                             stride, padding, dilation, groups, bias)
        if norm == "weight_norm":
            self.conv = weight_norm(self.conv)
    
    def forward(self, x):
        return self.conv(x)


class MPD(nn.Module):
    def __init__(self, period):
        super().__init__()
        self.period = period
        self.convs = nn.ModuleList([
            WNConv2d(1, 32, (5, 1), (3, 1), padding=(2, 0)),
            WNConv2d(32, 128, (5, 1), (3, 1), padding=(2, 0)),
            WNConv2d(128, 512, (5, 1), (3, 1), padding=(2, 0)),
            WNConv2d(512, 1024, (5, 1), (3, 1), padding=(2, 0)),
            WNConv2d(1024, 1024, (5, 1), 1, padding=(2, 0)),
        ])
        self.conv_post = WNConv2d(1024, 1, kernel_size=(3, 1), padding=(1, 0), act=False)

    def pad_to_period(self, x):
        t = x.shape[-1]
        x = F.pad(x, (0, self.period - t % self.period), mode="reflect")
        return x

    def forward(self, x):
        fmap = []
        x = self.pad_to_period(x)
        x = rearrange(x, "b c (l p) -> b c l p", p=self.period)

        for layer in self.convs:
            x = layer(x)
            fmap.append(x)

        x = self.conv_post(x)
        fmap.append(x)
        return fmap


class MSD(nn.Module):
    def __init__(self, rate: int = 1, sample_rate: int = 44100):
        super().__init__()
        self.convs = nn.ModuleList([
            WNConv1d(1, 16, 15, 1, padding=7),
            WNConv1d(16, 64, 41, 4, groups=4, padding=20),
            WNConv1d(64, 256, 41, 4, groups=16, padding=20),
            WNConv1d(256, 1024, 41, 4, groups=64, padding=20),
            WNConv1d(1024, 1024, 41, 4, groups=256, padding=20),
            WNConv1d(1024, 1024, 5, 1, padding=2),
        ])
        self.conv_post = WNConv1d(1024, 1, 3, 1, padding=1, act=False)
        self.sample_rate = sample_rate
        self.rate = rate

    def forward(self, x):
        x = AudioSignal(x, self.sample_rate)
        x.resample(self.sample_rate // self.rate)
        x = x.audio_data

        fmap = []
        for l in self.convs:
            x = l(x)
            fmap.append(x)
        x = self.conv_post(x)
        fmap.append(x)
        return fmap


class DiscriminatorCQT(nn.Module):
    def __init__(self, cfg, hop_length, n_octaves, bins_per_octave):
        super().__init__()
        self.cfg = cfg
        self.filters = cfg.filters
        self.max_filters = cfg.max_filters
        self.filters_scale = cfg.filters_scale
        self.kernel_size = (3, 9)
        self.dilations = cfg.dilations
        self.stride = (1, 2)
        self.in_channels = cfg.in_channels
        self.out_channels = cfg.out_channels
        self.fs = cfg.sampling_rate
        self.hop_length = hop_length
        self.n_octaves = n_octaves
        self.bins_per_octave = bins_per_octave

        self.cqt_transform = features.cqt.CQT2010v2(
            sr=self.fs * 2,
            hop_length=self.hop_length,
            n_bins=self.bins_per_octave * self.n_octaves,
            bins_per_octave=self.bins_per_octave,
            output_format="Complex",
            pad_mode="constant",
        )

        self.conv_pres = nn.ModuleList()
        for i in range(self.n_octaves):
            self.conv_pres.append(
                NormConv2d(
                    self.in_channels * 2,  # Real + Imaginary
                    self.in_channels * 2,
                    kernel_size=self.kernel_size,
                    padding=get_2d_padding(self.kernel_size),
                    norm="weight_norm",
                )
            )

        self.convs = nn.ModuleList()
        self.convs.append(
            NormConv2d(
                self.in_channels * 2,
                self.filters,
                kernel_size=self.kernel_size,
                padding=get_2d_padding(self.kernel_size),
            )
        )

        in_chs = min(self.filters_scale * self.filters, self.max_filters)
        for i, dilation in enumerate(self.dilations):
            out_chs = min((self.filters_scale ** (i + 1)) * self.filters, self.max_filters)
            self.convs.append(
                NormConv2d(
                    in_chs,
                    out_chs,
                    kernel_size=self.kernel_size,
                    stride=self.stride,
                    dilation=(dilation, 1),
                    padding=get_2d_padding(self.kernel_size, (dilation, 1)),
                    norm="weight_norm",
                )
            )
            in_chs = out_chs
            
        out_chs = min(
            (self.filters_scale ** (len(self.dilations) + 1)) * self.filters,
            self.max_filters,
        )
        self.convs.append(
            NormConv2d(
                in_chs,
                out_chs,
                kernel_size=(self.kernel_size[0], self.kernel_size[0]),
                padding=get_2d_padding((self.kernel_size[0], self.kernel_size[0])),
                norm="weight_norm",
            )
        )

        self.conv_post = NormConv2d(
            out_chs,
            self.out_channels,
            kernel_size=(self.kernel_size[0], self.kernel_size[0]),
            padding=get_2d_padding((self.kernel_size[0], self.kernel_size[0])),
            norm="weight_norm",
        )

        self.activation = torch.nn.LeakyReLU(negative_slope=0.1)
        self.resample = torchaudio.transforms.Resample(
            orig_freq=self.fs, new_freq=self.fs * 2
        )

    def forward(self, x):
        fmap = []
        x = self.resample(x)
        z = self.cqt_transform(x)
        

        z_amplitude = z[:, :, :, 0].unsqueeze(1)
        z_phase = z[:, :, :, 1].unsqueeze(1)
        z = torch.cat([z_amplitude, z_phase], dim=1)
        z = rearrange(z, "b c w t -> b c t w")

        latent_z = []
        for i in range(self.n_octaves):
            octave_band = z[:, :, :, i * self.bins_per_octave : (i + 1) * self.bins_per_octave]
            processed_band = self.conv_pres[i](octave_band)
            latent_z.append(processed_band)
        latent_z = torch.cat(latent_z, dim=-1)

        for i, l in enumerate(self.convs):
            latent_z = l(latent_z)
            latent_z = self.activation(latent_z)
            fmap.append(latent_z)

        latent_z = self.conv_post(latent_z)
        fmap.append(latent_z)
        
        return fmap


class MultiScaleSubbandCQT(nn.Module):
    """CQT discriminator at multiple scales"""
    def __init__(self, sample_rate=44100):
        super().__init__()
        cfg = Munch({
            "hop_lengths": [1024, 512, 512],
            "sampling_rate": sample_rate,
            "filters": 32,
            "max_filters": 1024,
            "filters_scale": 1,
            "dilations": [1, 2, 4],
            "in_channels": 1,
            "out_channels": 1,
            "n_octaves": [10, 10, 10],
            "bins_per_octaves": [24, 36, 48],
        })
        self.cfg = cfg
        self.discriminators = nn.ModuleList([
            DiscriminatorCQT(
                cfg,
                hop_length=cfg.hop_lengths[i],
                n_octaves=cfg.n_octaves[i],
                bins_per_octave=cfg.bins_per_octaves[i],
            )
            for i in range(len(cfg.hop_lengths))
        ])

    def forward(self, x):
        fmap = []
        for disc in self.discriminators:
            fmap.extend(disc(x))
        return fmap


BANDS = [(0.0, 0.1), (0.1, 0.25), (0.25, 0.5), (0.5, 0.75), (0.75, 1.0)]

class MRD(nn.Module):
    def __init__(self, window_length: int, hop_factor: float = 0.25, 
                 sample_rate: int = 44100, bands: list = BANDS):
        """Multi-resolution spectrogram discriminator."""
        super().__init__()
        self.window_length = window_length
        self.hop_factor = hop_factor
        self.sample_rate = sample_rate
        self.stft_params = STFTParams(
            window_length=window_length,
            hop_length=int(window_length * hop_factor),
            match_stride=True,
        )

        n_fft = window_length // 2 + 1
        bands = [(int(b[0] * n_fft), int(b[1] * n_fft)) for b in bands]
        self.bands = bands

        ch = 32
        convs = lambda: nn.ModuleList([
            WNConv2d(2, ch, (3, 9), (1, 1), padding=(1, 4)),
            WNConv2d(ch, ch, (3, 9), (1, 2), padding=(1, 4)),
            WNConv2d(ch, ch, (3, 9), (1, 2), padding=(1, 4)),
            WNConv2d(ch, ch, (3, 9), (1, 2), padding=(1, 4)),
            WNConv2d(ch, ch, (3, 3), (1, 1), padding=(1, 1)),
        ])
        self.band_convs = nn.ModuleList([convs() for _ in range(len(self.bands))])
        self.conv_post = WNConv2d(ch, 1, (3, 3), (1, 1), padding=(1, 1), act=False)

    def spectrogram(self, x):
        x = AudioSignal(x, self.sample_rate, stft_params=self.stft_params)
        x = torch.view_as_real(x.stft())
        x = rearrange(x, "b 1 f t c -> (b 1) c t f")
        x_bands = [x[..., b[0] : b[1]] for b in self.bands]
        return x_bands

    def forward(self, x):
        x_bands = self.spectrogram(x)
        fmap = []

        x = []
        for band, stack in zip(x_bands, self.band_convs):
            for layer in stack:
                band = layer(band)
                fmap.append(band)
            x.append(band)

        x = torch.cat(x, dim=-1)
        x = self.conv_post(x)
        fmap.append(x)
        return fmap


class Discriminator(ml.BaseModel):
    def __init__(
        self,
        rates: list = [],
        periods: list = [2, 3, 5, 7, 11],
        fft_sizes: list = [2048, 1024, 512],
        sample_rate: int = 44100,
    ):
        """Discriminator combining MPD, MSD, MRD and CQT.
        
        Parameters
        ----------
        rates : list, optional
            Sampling rates for MSD, by default []
        periods : list, optional
            Periods for MPD, by default [2, 3, 5, 7, 11]
        fft_sizes : list, optional
            FFT sizes for MRD, by default [2048, 1024, 512]
        sample_rate : int, optional
            Sampling rate of audio in Hz, by default 44100
        """
        super().__init__()
        discs = []
        # Time-domain discriminators
        discs += [MPD(p) for p in periods]
        discs += [MSD(r, sample_rate=sample_rate) for r in rates]
        
        # Frequency-domain discriminators (both STFT and CQT)
        discs += [MRD(f, sample_rate=sample_rate) for f in fft_sizes]
        discs += [MultiScaleSubbandCQT(sample_rate=sample_rate)]
            
        self.discriminators = nn.ModuleList(discs)

    def preprocess(self, y):
        # Remove DC offset
        y = y - y.mean(dim=-1, keepdims=True)
        # Peak normalize
        y = 0.8 * y / (y.abs().max(dim=-1, keepdim=True)[0] + 1e-9)
        return y

    def forward(self, x):
        x = self.preprocess(x)
        fmaps = [d(x) for d in self.discriminators]
        return fmaps