Update boson_codeit.py
Browse files- boson_codeit.py +15 -361
boson_codeit.py
CHANGED
|
@@ -1,260 +1,3 @@
|
|
| 1 |
-
# #!/usr/bin/env python3
|
| 2 |
-
# """
|
| 3 |
-
# Audio Processing Script for Boson Codes
|
| 4 |
-
# Processes audio files in parallel using Higgs Audio Tokenizer
|
| 5 |
-
# and saves encoded representations as .pt files.
|
| 6 |
-
# """
|
| 7 |
-
|
| 8 |
-
# import os
|
| 9 |
-
# import sys
|
| 10 |
-
# import json
|
| 11 |
-
# import torch
|
| 12 |
-
# import librosa
|
| 13 |
-
# import numpy as np
|
| 14 |
-
# import warnings
|
| 15 |
-
# import argparse
|
| 16 |
-
# from pathlib import Path
|
| 17 |
-
# from multiprocessing import Pool
|
| 18 |
-
# from tqdm import tqdm
|
| 19 |
-
|
| 20 |
-
# from datasets import load_from_disk
|
| 21 |
-
# from higgs_audio_tokenizer import HiggsAudioTokenizer
|
| 22 |
-
|
| 23 |
-
# # Suppress PyTorch FutureWarnings
|
| 24 |
-
# warnings.filterwarnings("ignore", category=FutureWarning)
|
| 25 |
-
|
| 26 |
-
# # Global configuration
|
| 27 |
-
# DEFAULT_OUTPUT_DIR = "/home/ubuntu/boson_codes"
|
| 28 |
-
# DEFAULT_NUM_CORES = 48
|
| 29 |
-
# DEFAULT_SAMPLE_RATE = 44100
|
| 30 |
-
# DEFAULT_DATASET_PATH = "/home/ubuntu/ttsar/Layla/src_bpe_2/data"
|
| 31 |
-
|
| 32 |
-
# # Model paths
|
| 33 |
-
# CONFIG_PATH = "/home/ubuntu/.cache/huggingface/hub/models--bosonai--higgs-audio-v2-tokenizer/snapshots/9d4988fbd4ad07b4cac3a5fa462741a41810dbec/config.json"
|
| 34 |
-
# MODEL_PATH = "/home/ubuntu/.cache/huggingface/hub/models--bosonai--higgs-audio-v2-tokenizer/snapshots/9d4988fbd4ad07b4cac3a5fa462741a41810dbec/model.pth"
|
| 35 |
-
|
| 36 |
-
# # Global model variable (initialized in each worker)
|
| 37 |
-
# model = None
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
# def init_worker():
|
| 41 |
-
# """Initialize model once per worker process."""
|
| 42 |
-
# global model
|
| 43 |
-
# device = 'cpu'
|
| 44 |
-
|
| 45 |
-
# # Load config
|
| 46 |
-
# with open(CONFIG_PATH, 'r') as f:
|
| 47 |
-
# config = json.load(f)
|
| 48 |
-
|
| 49 |
-
# # Initialize model
|
| 50 |
-
# model = HiggsAudioTokenizer(
|
| 51 |
-
# **config,
|
| 52 |
-
# device=device,
|
| 53 |
-
# )
|
| 54 |
-
|
| 55 |
-
# # Load weights
|
| 56 |
-
# parameter_dict = torch.load(MODEL_PATH, map_location=device)
|
| 57 |
-
# _ = model.load_state_dict(parameter_dict, strict=False)
|
| 58 |
-
# model = model.to(device)
|
| 59 |
-
# _ = model.eval()
|
| 60 |
-
|
| 61 |
-
# print(f"Model loaded in worker {os.getpid()}")
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
# def process_audio_file(args):
|
| 65 |
-
# """Process a single audio file using pre-loaded model."""
|
| 66 |
-
# filename, output_dir, sample_rate = args
|
| 67 |
-
|
| 68 |
-
# try:
|
| 69 |
-
# # Output filename - same name, just change extension to .pt
|
| 70 |
-
# base_name = Path(filename).stem
|
| 71 |
-
# output_path = os.path.join(output_dir, f"{base_name}.pt")
|
| 72 |
-
|
| 73 |
-
# # Skip if exists (double-check in case of race conditions)
|
| 74 |
-
# if os.path.exists(output_path):
|
| 75 |
-
# return ("skipped", filename)
|
| 76 |
-
|
| 77 |
-
# # Load and process audio
|
| 78 |
-
# wav, sr = librosa.load(filename, sr=sample_rate)
|
| 79 |
-
# wav = torch.from_numpy(wav).unsqueeze(0).float().to('cpu')
|
| 80 |
-
|
| 81 |
-
# # Encode using the pre-loaded model
|
| 82 |
-
# with torch.no_grad():
|
| 83 |
-
# encoded = model._xcodec_encode(wav.unsqueeze(0))
|
| 84 |
-
|
| 85 |
-
# # Save codes only
|
| 86 |
-
# torch.save(encoded.audio_codes, output_path)
|
| 87 |
-
|
| 88 |
-
# return ("success", filename)
|
| 89 |
-
|
| 90 |
-
# except Exception as e:
|
| 91 |
-
# return ("error", filename, str(e))
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
# def load_dataset(dataset_path):
|
| 95 |
-
# """Load and prepare the dataset."""
|
| 96 |
-
# print(f"Loading dataset from: {dataset_path}")
|
| 97 |
-
# ds = load_from_disk(dataset_path)
|
| 98 |
-
# print(f"Dataset info: {ds}")
|
| 99 |
-
|
| 100 |
-
# # Remove unnecessary columns
|
| 101 |
-
# columns_to_remove = ['spk', 'duration', 'codes', 'input_ids', 'attention_mask']
|
| 102 |
-
# existing_columns = [col for col in columns_to_remove if col in ds.column_names]
|
| 103 |
-
# if existing_columns:
|
| 104 |
-
# ds = ds.remove_columns(existing_columns)
|
| 105 |
-
# print(f"Removed columns: {existing_columns}")
|
| 106 |
-
|
| 107 |
-
# # Convert to pandas DataFrame
|
| 108 |
-
# df = ds.to_pandas()
|
| 109 |
-
# print(f"Loaded {len(df)} files from dataset")
|
| 110 |
-
# return df
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
# def main(args):
|
| 114 |
-
# """Main processing function."""
|
| 115 |
-
# # Change to audio processing directory
|
| 116 |
-
# os.chdir("/home/ubuntu/ttsar/boson_audio_codec/audio_processing")
|
| 117 |
-
# print(f"Working directory: {os.getcwd()}")
|
| 118 |
-
|
| 119 |
-
# # Create output directory
|
| 120 |
-
# os.makedirs(args.output_dir, exist_ok=True)
|
| 121 |
-
# print(f"Output directory: {args.output_dir}")
|
| 122 |
-
|
| 123 |
-
# # Check if model files exist
|
| 124 |
-
# if not os.path.exists(CONFIG_PATH):
|
| 125 |
-
# print(f"Error: Config file not found at {CONFIG_PATH}")
|
| 126 |
-
# sys.exit(1)
|
| 127 |
-
# if not os.path.exists(MODEL_PATH):
|
| 128 |
-
# print(f"Error: Model file not found at {MODEL_PATH}")
|
| 129 |
-
# sys.exit(1)
|
| 130 |
-
|
| 131 |
-
# # Load dataset
|
| 132 |
-
# df = load_dataset(args.dataset_path)
|
| 133 |
-
|
| 134 |
-
# # Get filenames from dataframe
|
| 135 |
-
# all_filenames = df['filename'].tolist()
|
| 136 |
-
|
| 137 |
-
# # Pre-filter to exclude already processed files
|
| 138 |
-
# filenames_to_process = []
|
| 139 |
-
# already_processed = []
|
| 140 |
-
|
| 141 |
-
# print(f"\nChecking for already processed files...")
|
| 142 |
-
# for filename in all_filenames:
|
| 143 |
-
# base_name = Path(filename).stem
|
| 144 |
-
# output_path = os.path.join(args.output_dir, f"{base_name}.pt")
|
| 145 |
-
# if os.path.exists(output_path):
|
| 146 |
-
# already_processed.append(filename)
|
| 147 |
-
# else:
|
| 148 |
-
# filenames_to_process.append(filename)
|
| 149 |
-
|
| 150 |
-
# print(f"\nTotal files: {len(all_filenames)}")
|
| 151 |
-
# print(f"Already processed: {len(already_processed)}")
|
| 152 |
-
# print(f"To process: {len(filenames_to_process)}")
|
| 153 |
-
|
| 154 |
-
# if len(filenames_to_process) == 0:
|
| 155 |
-
# print("\nAll files have already been processed!")
|
| 156 |
-
# return
|
| 157 |
-
|
| 158 |
-
# print(f"\nProcessing {len(filenames_to_process)} files using {args.num_cores} cores...")
|
| 159 |
-
# print(f"Sample rate: {args.sample_rate} Hz")
|
| 160 |
-
|
| 161 |
-
# # Prepare arguments for multiprocessing
|
| 162 |
-
# process_args = [(filename, args.output_dir, args.sample_rate)
|
| 163 |
-
# for filename in filenames_to_process]
|
| 164 |
-
|
| 165 |
-
# # Process in parallel with model reuse
|
| 166 |
-
# with Pool(processes=args.num_cores, initializer=init_worker) as pool:
|
| 167 |
-
# results = list(tqdm(
|
| 168 |
-
# pool.imap(process_audio_file, process_args, chunksize=args.chunksize),
|
| 169 |
-
# total=len(filenames_to_process),
|
| 170 |
-
# desc="Processing audio files"
|
| 171 |
-
# ))
|
| 172 |
-
|
| 173 |
-
# # Count results
|
| 174 |
-
# processed = sum(1 for r in results if r[0] == "success")
|
| 175 |
-
# skipped = sum(1 for r in results if r[0] == "skipped")
|
| 176 |
-
# errors = sum(1 for r in results if r[0] == "error")
|
| 177 |
-
|
| 178 |
-
# print(f"\nProcessing complete!")
|
| 179 |
-
# print(f" Successfully processed: {processed}")
|
| 180 |
-
# print(f" Previously processed: {len(already_processed)}")
|
| 181 |
-
# print(f" Skipped (race condition): {skipped}")
|
| 182 |
-
# print(f" Errors: {errors}")
|
| 183 |
-
|
| 184 |
-
# # Show errors if any
|
| 185 |
-
# if errors > 0:
|
| 186 |
-
# print("\nErrors encountered:")
|
| 187 |
-
# error_log_path = os.path.join(args.output_dir, "processing_errors.log")
|
| 188 |
-
# with open(error_log_path, 'w') as f:
|
| 189 |
-
# for r in results:
|
| 190 |
-
# if r[0] == "error":
|
| 191 |
-
# error_msg = f"{r[1]}: {r[2]}"
|
| 192 |
-
# print(f" {error_msg}")
|
| 193 |
-
# f.write(error_msg + "\n")
|
| 194 |
-
# print(f"\nError log saved to: {error_log_path}")
|
| 195 |
-
|
| 196 |
-
# # Show summary of all processed files
|
| 197 |
-
# total_processed_files = len(list(Path(args.output_dir).glob("*.pt")))
|
| 198 |
-
# print(f"\nTotal .pt files in {args.output_dir}: {total_processed_files}")
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
# if __name__ == "__main__":
|
| 202 |
-
# parser = argparse.ArgumentParser(
|
| 203 |
-
# description="Process audio files using Higgs Audio Tokenizer and save as .pt files"
|
| 204 |
-
# )
|
| 205 |
-
|
| 206 |
-
# parser.add_argument(
|
| 207 |
-
# "--dataset-path",
|
| 208 |
-
# type=str,
|
| 209 |
-
# default=DEFAULT_DATASET_PATH,
|
| 210 |
-
# help=f"Path to the dataset (default: {DEFAULT_DATASET_PATH})"
|
| 211 |
-
# )
|
| 212 |
-
|
| 213 |
-
# parser.add_argument(
|
| 214 |
-
# "--output-dir",
|
| 215 |
-
# type=str,
|
| 216 |
-
# default=DEFAULT_OUTPUT_DIR,
|
| 217 |
-
# help=f"Output directory for .pt files (default: {DEFAULT_OUTPUT_DIR})"
|
| 218 |
-
# )
|
| 219 |
-
|
| 220 |
-
# parser.add_argument(
|
| 221 |
-
# "--num-cores",
|
| 222 |
-
# type=int,
|
| 223 |
-
# default=DEFAULT_NUM_CORES,
|
| 224 |
-
# help=f"Number of CPU cores to use (default: {DEFAULT_NUM_CORES})"
|
| 225 |
-
# )
|
| 226 |
-
|
| 227 |
-
# parser.add_argument(
|
| 228 |
-
# "--sample-rate",
|
| 229 |
-
# type=int,
|
| 230 |
-
# default=DEFAULT_SAMPLE_RATE,
|
| 231 |
-
# help=f"Sample rate for audio processing (default: {DEFAULT_SAMPLE_RATE})"
|
| 232 |
-
# )
|
| 233 |
-
|
| 234 |
-
# parser.add_argument(
|
| 235 |
-
# "--chunksize",
|
| 236 |
-
# type=int,
|
| 237 |
-
# default=1,
|
| 238 |
-
# help="Chunksize for multiprocessing pool (default: 1)"
|
| 239 |
-
# )
|
| 240 |
-
|
| 241 |
-
# args = parser.parse_args()
|
| 242 |
-
|
| 243 |
-
# # Run main processing
|
| 244 |
-
# try:
|
| 245 |
-
# main(args)
|
| 246 |
-
# except KeyboardInterrupt:
|
| 247 |
-
# print("\n\nProcessing interrupted by user")
|
| 248 |
-
# sys.exit(1)
|
| 249 |
-
# except Exception as e:
|
| 250 |
-
# print(f"\n\nError: {e}")
|
| 251 |
-
# sys.exit(1)
|
| 252 |
-
|
| 253 |
-
#!/usr/bin/env python3
|
| 254 |
-
"""
|
| 255 |
-
GPU Batch Processing Script for Boson Codes with Dataset Loading
|
| 256 |
-
"""
|
| 257 |
-
|
| 258 |
import os
|
| 259 |
import sys
|
| 260 |
import json
|
|
@@ -266,27 +9,20 @@ from pathlib import Path
|
|
| 266 |
from tqdm import tqdm
|
| 267 |
import warnings
|
| 268 |
from torch.nn.utils import remove_weight_norm, weight_norm
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
# from boson_multimodal.audio_processing.higgs_audio_tokenizer import load_higgs_audio_tokenizer
|
| 272 |
-
# model = load_higgs_audio_tokenizer("bosonai/higgs-audio-v2-tokenizer")
|
| 273 |
import librosa
|
| 274 |
import torch
|
| 275 |
import torch.nn.functional as F
|
| 276 |
import numpy as np
|
| 277 |
import json
|
| 278 |
import torch
|
| 279 |
-
|
| 280 |
from higgs_audio_tokenizer import HiggsAudioTokenizer
|
| 281 |
-
# model = load_higgs_audio_tokenizer("bosonai/higgs-audio-v2-tokenizer")
|
| 282 |
-
|
| 283 |
import torch
|
| 284 |
import torch.nn as nn
|
| 285 |
import warnings
|
| 286 |
|
| 287 |
-
# Suppress warnings
|
| 288 |
warnings.filterwarnings('ignore')
|
| 289 |
|
|
|
|
| 290 |
def remove_weight_norms_from_model(model):
|
| 291 |
for module in model.modules():
|
| 292 |
try:
|
|
@@ -300,58 +36,42 @@ class EncodedResult:
|
|
| 300 |
def __init__(self, audio_codes):
|
| 301 |
self.audio_codes = audio_codes
|
| 302 |
|
|
|
|
| 303 |
def encode_batch(model, x_batch):
|
| 304 |
-
"""
|
| 305 |
-
Encodes a batch of audio tensors using the HiggsAudioTokenizer model.
|
| 306 |
-
Args:
|
| 307 |
-
model: The loaded HiggsAudioTokenizer model.
|
| 308 |
-
x_batch: A tensor of shape [B, 1, T]
|
| 309 |
-
"""
|
| 310 |
-
# Acoustic and Semantic Feature Extraction
|
| 311 |
e_semantic_input = model.get_regress_target(x_batch).detach()
|
| 312 |
e_semantic = model.encoder_semantic(e_semantic_input.transpose(1, 2))
|
| 313 |
e_acoustic = model.encoder(x_batch)
|
| 314 |
-
|
| 315 |
-
# This block contains the fix for batch processing
|
| 316 |
if e_acoustic.shape[2] != e_semantic.shape[2]:
|
| 317 |
pad_size = 160 * model.semantic_downsample_factor
|
| 318 |
|
| 319 |
-
# 1. Remove channel dim, preserving batch dim -> [B, T]
|
| 320 |
x_slice = x_batch[:, 0, :]
|
| 321 |
|
| 322 |
-
# 2. Pad the tensor
|
| 323 |
x_padded = F.pad(x_slice, (pad_size, pad_size))
|
| 324 |
|
| 325 |
-
# 3. Re-add channel dim before passing to encoder -> [B, 1, T_padded]
|
| 326 |
e_acoustic = model.encoder(x_padded.unsqueeze(1))
|
| 327 |
-
|
| 328 |
-
# Ensure dimensions match before concatenating
|
| 329 |
min_len = min(e_acoustic.shape[2], e_semantic.shape[2])
|
| 330 |
e_acoustic = e_acoustic[:, :, :min_len]
|
| 331 |
e_semantic = e_semantic[:, :, :min_len]
|
| 332 |
-
|
| 333 |
-
# Remainder of the original encoding logic
|
| 334 |
e = torch.cat([e_acoustic, e_semantic], dim=1)
|
| 335 |
e = model.fc_prior(e.transpose(1, 2))
|
| 336 |
-
|
| 337 |
if model.quantizer_type == "RVQ":
|
| 338 |
e = e.transpose(1, 2)
|
| 339 |
_, codes, _, _ = model.quantizer(e, model.frame_rate, None)
|
| 340 |
codes = codes.permute(1, 0, 2)
|
| 341 |
-
else:
|
| 342 |
quantized, codes = model.quantizer(e)
|
| 343 |
codes = codes.permute(0, 2, 1)
|
| 344 |
-
|
| 345 |
return EncodedResult(audio_codes=codes)
|
| 346 |
|
| 347 |
|
| 348 |
def fix_all_inference_issues(model):
|
| 349 |
-
"""
|
| 350 |
-
Comprehensive fix for all potential inference issues
|
| 351 |
-
"""
|
| 352 |
device = next(model.parameters()).device
|
| 353 |
|
| 354 |
-
# 1. Force everything to eval mode
|
| 355 |
model.eval()
|
| 356 |
with torch.no_grad():
|
| 357 |
for module in model.modules():
|
|
@@ -360,15 +80,12 @@ def fix_all_inference_issues(model):
|
|
| 360 |
if hasattr(module, 'training'):
|
| 361 |
module.training = False
|
| 362 |
|
| 363 |
-
# 2. Fix semantic model specifically
|
| 364 |
if hasattr(model, 'semantic_model'):
|
| 365 |
print("Fixing semantic model...")
|
| 366 |
|
| 367 |
-
# Move to correct device
|
| 368 |
model.semantic_model = model.semantic_model.to(device)
|
| 369 |
model.semantic_model.eval()
|
| 370 |
|
| 371 |
-
# Disable ALL gradient checkpointing
|
| 372 |
def disable_gradient_checkpointing(module):
|
| 373 |
if hasattr(module, 'gradient_checkpointing'):
|
| 374 |
module.gradient_checkpointing = False
|
|
@@ -382,7 +99,6 @@ def fix_all_inference_issues(model):
|
|
| 382 |
|
| 383 |
disable_gradient_checkpointing(model.semantic_model)
|
| 384 |
|
| 385 |
-
# For HuBERT specifically
|
| 386 |
if hasattr(model.semantic_model, 'encoder'):
|
| 387 |
model.semantic_model.encoder.gradient_checkpointing = False
|
| 388 |
if hasattr(model.semantic_model.encoder, 'layers'):
|
|
@@ -390,7 +106,6 @@ def fix_all_inference_issues(model):
|
|
| 390 |
if hasattr(layer, 'gradient_checkpointing'):
|
| 391 |
layer.gradient_checkpointing = False
|
| 392 |
|
| 393 |
-
# 3. Set all dropout to eval mode
|
| 394 |
def set_dropout_eval(module):
|
| 395 |
if isinstance(module, nn.Dropout):
|
| 396 |
module.eval()
|
|
@@ -400,21 +115,16 @@ def fix_all_inference_issues(model):
|
|
| 400 |
|
| 401 |
set_dropout_eval(model)
|
| 402 |
|
| 403 |
-
# 4. Clear any cached computations
|
| 404 |
torch.cuda.empty_cache() if torch.cuda.is_available() else None
|
| 405 |
|
| 406 |
return model
|
| 407 |
|
|
|
|
| 408 |
def inference_pipeline(checkpoint_path, config_path, device='cuda'):
|
| 409 |
-
"""
|
| 410 |
-
Complete pipeline for inference with your trained model
|
| 411 |
-
"""
|
| 412 |
-
# Load config
|
| 413 |
print("Loading config...")
|
| 414 |
with open(config_path, 'r') as f:
|
| 415 |
config = json.load(f)
|
| 416 |
|
| 417 |
-
# Create model
|
| 418 |
print("Creating model...")
|
| 419 |
model = HiggsAudioTokenizer(
|
| 420 |
n_filters=config['n_filters'],
|
|
@@ -429,7 +139,6 @@ def inference_pipeline(checkpoint_path, config_path, device='cuda'):
|
|
| 429 |
device=device
|
| 430 |
).to(device)
|
| 431 |
|
| 432 |
-
# Load checkpoint
|
| 433 |
print("Loading checkpoint...")
|
| 434 |
checkpoint = torch.load(checkpoint_path, map_location=device, weights_only=False)
|
| 435 |
|
|
@@ -438,7 +147,6 @@ def inference_pipeline(checkpoint_path, config_path, device='cuda'):
|
|
| 438 |
else:
|
| 439 |
state_dict = checkpoint
|
| 440 |
|
| 441 |
-
# Remove 'module.' prefix if present (from DDP)
|
| 442 |
new_state_dict = {}
|
| 443 |
for k, v in state_dict.items():
|
| 444 |
if k.startswith('module.'):
|
|
@@ -448,47 +156,30 @@ def inference_pipeline(checkpoint_path, config_path, device='cuda'):
|
|
| 448 |
|
| 449 |
model.load_state_dict(new_state_dict, strict=False)
|
| 450 |
|
| 451 |
-
# Fix all inference issues
|
| 452 |
print("Fixing inference issues...")
|
| 453 |
model = fix_all_inference_issues(model)
|
| 454 |
-
|
| 455 |
|
| 456 |
return model
|
| 457 |
|
| 458 |
|
| 459 |
-
|
| 460 |
-
# # Add paths
|
| 461 |
-
# sys.path.insert(0, "/home/ubuntu/AP-BWE")
|
| 462 |
-
|
| 463 |
-
# Suppress warnings
|
| 464 |
warnings.filterwarnings("ignore")
|
| 465 |
|
| 466 |
-
# Configuration
|
| 467 |
OUTPUT_DIR = "/home/ubuntu/data_boson_44.1khz"
|
| 468 |
BATCH_SIZE = 32
|
| 469 |
SAMPLE_RATE = 44100
|
| 470 |
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 471 |
DATASET_PATH = "/home/ubuntu/ttsar/Layla/src_bpe_2/Qanary_data"
|
| 472 |
|
| 473 |
-
# # Model paths
|
| 474 |
-
# CONFIG_PATH = "/home/ubuntu/.cache/huggingface/hub/models--bosonai--higgs-audio-v2-tokenizer/snapshots/9d4988fbd4ad07b4cac3a5fa462741a41810dbec/config.json"
|
| 475 |
-
# MODEL_PATH = "/home/ubuntu/.cache/huggingface/hub/models--bosonai--higgs-audio-v2-tokenizer/snapshots/9d4988fbd4ad07b4cac3a5fa462741a41810dbec/model.pth"
|
| 476 |
-
|
| 477 |
-
# --- Setup ---
|
| 478 |
print(f"Using device: {DEVICE}")
|
| 479 |
|
| 480 |
-
# Change to working directory
|
| 481 |
os.chdir("/home/ubuntu/ttsar/boson_audio_codec/audio_processing")
|
| 482 |
|
| 483 |
-
# Load dataset
|
| 484 |
from datasets import load_from_disk
|
| 485 |
|
| 486 |
-
|
| 487 |
print(f"Loading dataset from: {DATASET_PATH}")
|
| 488 |
ds = load_from_disk(DATASET_PATH)
|
| 489 |
print(f"Dataset info: {ds}")
|
| 490 |
|
| 491 |
-
# Remove unnecessary columns
|
| 492 |
columns_to_remove = ['spk', 'duration', 'codes', 'input_ids', 'attention_mask']
|
| 493 |
existing_columns = [col for col in columns_to_remove if col in ds.column_names]
|
| 494 |
if existing_columns:
|
|
@@ -500,14 +191,14 @@ print(f"Loaded {len(df)} files from dataset")
|
|
| 500 |
os.makedirs(OUTPUT_DIR, exist_ok=True)
|
| 501 |
print(f"Output directory '{OUTPUT_DIR}' is ready.")
|
| 502 |
|
| 503 |
-
# --- Filter already processed ---
|
| 504 |
print("Checking for already processed files...")
|
| 505 |
|
|
|
|
| 506 |
def get_output_path(audio_path):
|
| 507 |
base_name = Path(audio_path).stem
|
| 508 |
return os.path.join(OUTPUT_DIR, f"{base_name}.pt")
|
| 509 |
|
| 510 |
-
|
| 511 |
original_count = len(df)
|
| 512 |
df['output_exists'] = df['filename'].apply(lambda x: os.path.exists(get_output_path(x)))
|
| 513 |
df_filtered = df[~df['output_exists']].copy()
|
|
@@ -520,47 +211,24 @@ if len(df_filtered) == 0:
|
|
| 520 |
print("All files have already been processed!")
|
| 521 |
exit()
|
| 522 |
|
| 523 |
-
# --- Load Model ---
|
| 524 |
print("Loading Higgs Audio Tokenizer model...")
|
| 525 |
-
|
| 526 |
from transformers import HubertModel
|
| 527 |
from higgs_audio_tokenizer import HiggsAudioTokenizer
|
| 528 |
|
| 529 |
-
# Load config
|
| 530 |
-
# with open(CONFIG_PATH, 'r') as f:
|
| 531 |
-
# config = json.load(f)
|
| 532 |
-
|
| 533 |
-
# # Initialize model
|
| 534 |
-
# model = HiggsAudioTokenizer(
|
| 535 |
-
# **config,
|
| 536 |
-
# device=DEVICE,
|
| 537 |
-
# )
|
| 538 |
-
|
| 539 |
-
# Load weights
|
| 540 |
-
# parameter_dict = torch.load(MODEL_PATH, map_location=DEVICE)
|
| 541 |
-
# _ = model.load_state_dict(parameter_dict, strict=False)
|
| 542 |
-
# model = model.to(DEVICE)
|
| 543 |
-
# _ = model.eval()
|
| 544 |
-
|
| 545 |
-
|
| 546 |
checkpoint_path = '/home/ubuntu/ttsar/boson_audio_codec/audio_processing/outputs_CQT/checkpoints/step_99000.pth'
|
| 547 |
config_path = '/home/ubuntu/ttsar/boson_audio_codec/audio_processing/config copy.json'
|
| 548 |
device = 'cuda'
|
|
|
|
| 549 |
model = inference_pipeline(checkpoint_path, config_path, device)
|
| 550 |
_ = model.eval()
|
| 551 |
-
|
| 552 |
model = remove_weight_norms_from_model(model)
|
| 553 |
-
|
| 554 |
print(f"Model loaded on {DEVICE}")
|
| 555 |
|
| 556 |
-
# Get hop length
|
| 557 |
hop_length = model.hop_length
|
| 558 |
print(f"Encoder hop length: {hop_length}")
|
| 559 |
|
| 560 |
-
# --- Batch Processing ---
|
| 561 |
print(f"\nStarting batch processing with batch size {BATCH_SIZE}...")
|
| 562 |
|
| 563 |
-
# Process in batches
|
| 564 |
filenames = df_filtered['filename'].tolist()
|
| 565 |
total_processed = 0
|
| 566 |
total_errors = 0
|
|
@@ -574,16 +242,13 @@ with torch.no_grad():
|
|
| 574 |
batch_lengths = []
|
| 575 |
batch_outputs = []
|
| 576 |
|
| 577 |
-
# Load batch
|
| 578 |
for filename in batch_filenames:
|
| 579 |
output_path = get_output_path(filename)
|
| 580 |
|
| 581 |
-
# Skip if exists (race condition check)
|
| 582 |
if os.path.exists(output_path):
|
| 583 |
continue
|
| 584 |
|
| 585 |
try:
|
| 586 |
-
# Load audio
|
| 587 |
wav, _ = librosa.load(filename, sr=SAMPLE_RATE)
|
| 588 |
wav_tensor = torch.from_numpy(wav).float()
|
| 589 |
|
|
@@ -599,7 +264,6 @@ with torch.no_grad():
|
|
| 599 |
if not batch_audio:
|
| 600 |
continue
|
| 601 |
|
| 602 |
-
# Pad batch to same length
|
| 603 |
max_len = max(len(x) for x in batch_audio)
|
| 604 |
padded_batch = []
|
| 605 |
|
|
@@ -607,30 +271,21 @@ with torch.no_grad():
|
|
| 607 |
pad_len = max_len - len(audio)
|
| 608 |
if pad_len > 0:
|
| 609 |
audio = F.pad(audio, (0, pad_len), mode='constant', value=0)
|
| 610 |
-
# Don't add extra dimensions here, just collect the padded audio
|
| 611 |
padded_batch.append(audio)
|
| 612 |
|
| 613 |
-
|
| 614 |
-
|
| 615 |
-
batch_tensor = torch.stack(padded_batch, dim=0) # [B, T]
|
| 616 |
-
# Add channel dimension
|
| 617 |
-
batch_tensor = batch_tensor.unsqueeze(1) # [B, 1, T]
|
| 618 |
batch_tensor = batch_tensor.to(DEVICE)
|
| 619 |
|
| 620 |
-
# Encode batch
|
| 621 |
try:
|
| 622 |
encoded = encode_batch(model, batch_tensor)
|
| 623 |
-
codes = encoded.audio_codes
|
| 624 |
|
| 625 |
-
# Save each item
|
| 626 |
for idx, (output_path, orig_len) in enumerate(zip(batch_outputs, batch_lengths)):
|
| 627 |
-
# Calculate true code length
|
| 628 |
true_code_len = int(np.ceil(orig_len / hop_length))
|
| 629 |
|
| 630 |
-
# Extract non-padded codes
|
| 631 |
item_codes = codes[idx, :, :true_code_len].cpu()
|
| 632 |
|
| 633 |
-
# Save
|
| 634 |
torch.save(item_codes, output_path)
|
| 635 |
total_processed += 1
|
| 636 |
|
|
@@ -646,6 +301,5 @@ print(f"Previously processed: {skipped_count} files")
|
|
| 646 |
print(f"Errors encountered: {total_errors} files")
|
| 647 |
print(f"Output directory: {OUTPUT_DIR}")
|
| 648 |
|
| 649 |
-
# Final count
|
| 650 |
final_count = len(list(Path(OUTPUT_DIR).glob("*.pt")))
|
| 651 |
print(f"Total .pt files in output: {final_count}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
import sys
|
| 3 |
import json
|
|
|
|
| 9 |
from tqdm import tqdm
|
| 10 |
import warnings
|
| 11 |
from torch.nn.utils import remove_weight_norm, weight_norm
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
import librosa
|
| 13 |
import torch
|
| 14 |
import torch.nn.functional as F
|
| 15 |
import numpy as np
|
| 16 |
import json
|
| 17 |
import torch
|
|
|
|
| 18 |
from higgs_audio_tokenizer import HiggsAudioTokenizer
|
|
|
|
|
|
|
| 19 |
import torch
|
| 20 |
import torch.nn as nn
|
| 21 |
import warnings
|
| 22 |
|
|
|
|
| 23 |
warnings.filterwarnings('ignore')
|
| 24 |
|
| 25 |
+
|
| 26 |
def remove_weight_norms_from_model(model):
|
| 27 |
for module in model.modules():
|
| 28 |
try:
|
|
|
|
| 36 |
def __init__(self, audio_codes):
|
| 37 |
self.audio_codes = audio_codes
|
| 38 |
|
| 39 |
+
|
| 40 |
def encode_batch(model, x_batch):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
e_semantic_input = model.get_regress_target(x_batch).detach()
|
| 42 |
e_semantic = model.encoder_semantic(e_semantic_input.transpose(1, 2))
|
| 43 |
e_acoustic = model.encoder(x_batch)
|
| 44 |
+
|
|
|
|
| 45 |
if e_acoustic.shape[2] != e_semantic.shape[2]:
|
| 46 |
pad_size = 160 * model.semantic_downsample_factor
|
| 47 |
|
|
|
|
| 48 |
x_slice = x_batch[:, 0, :]
|
| 49 |
|
|
|
|
| 50 |
x_padded = F.pad(x_slice, (pad_size, pad_size))
|
| 51 |
|
|
|
|
| 52 |
e_acoustic = model.encoder(x_padded.unsqueeze(1))
|
| 53 |
+
|
|
|
|
| 54 |
min_len = min(e_acoustic.shape[2], e_semantic.shape[2])
|
| 55 |
e_acoustic = e_acoustic[:, :, :min_len]
|
| 56 |
e_semantic = e_semantic[:, :, :min_len]
|
| 57 |
+
|
|
|
|
| 58 |
e = torch.cat([e_acoustic, e_semantic], dim=1)
|
| 59 |
e = model.fc_prior(e.transpose(1, 2))
|
| 60 |
+
|
| 61 |
if model.quantizer_type == "RVQ":
|
| 62 |
e = e.transpose(1, 2)
|
| 63 |
_, codes, _, _ = model.quantizer(e, model.frame_rate, None)
|
| 64 |
codes = codes.permute(1, 0, 2)
|
| 65 |
+
else:
|
| 66 |
quantized, codes = model.quantizer(e)
|
| 67 |
codes = codes.permute(0, 2, 1)
|
| 68 |
+
|
| 69 |
return EncodedResult(audio_codes=codes)
|
| 70 |
|
| 71 |
|
| 72 |
def fix_all_inference_issues(model):
|
|
|
|
|
|
|
|
|
|
| 73 |
device = next(model.parameters()).device
|
| 74 |
|
|
|
|
| 75 |
model.eval()
|
| 76 |
with torch.no_grad():
|
| 77 |
for module in model.modules():
|
|
|
|
| 80 |
if hasattr(module, 'training'):
|
| 81 |
module.training = False
|
| 82 |
|
|
|
|
| 83 |
if hasattr(model, 'semantic_model'):
|
| 84 |
print("Fixing semantic model...")
|
| 85 |
|
|
|
|
| 86 |
model.semantic_model = model.semantic_model.to(device)
|
| 87 |
model.semantic_model.eval()
|
| 88 |
|
|
|
|
| 89 |
def disable_gradient_checkpointing(module):
|
| 90 |
if hasattr(module, 'gradient_checkpointing'):
|
| 91 |
module.gradient_checkpointing = False
|
|
|
|
| 99 |
|
| 100 |
disable_gradient_checkpointing(model.semantic_model)
|
| 101 |
|
|
|
|
| 102 |
if hasattr(model.semantic_model, 'encoder'):
|
| 103 |
model.semantic_model.encoder.gradient_checkpointing = False
|
| 104 |
if hasattr(model.semantic_model.encoder, 'layers'):
|
|
|
|
| 106 |
if hasattr(layer, 'gradient_checkpointing'):
|
| 107 |
layer.gradient_checkpointing = False
|
| 108 |
|
|
|
|
| 109 |
def set_dropout_eval(module):
|
| 110 |
if isinstance(module, nn.Dropout):
|
| 111 |
module.eval()
|
|
|
|
| 115 |
|
| 116 |
set_dropout_eval(model)
|
| 117 |
|
|
|
|
| 118 |
torch.cuda.empty_cache() if torch.cuda.is_available() else None
|
| 119 |
|
| 120 |
return model
|
| 121 |
|
| 122 |
+
|
| 123 |
def inference_pipeline(checkpoint_path, config_path, device='cuda'):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 124 |
print("Loading config...")
|
| 125 |
with open(config_path, 'r') as f:
|
| 126 |
config = json.load(f)
|
| 127 |
|
|
|
|
| 128 |
print("Creating model...")
|
| 129 |
model = HiggsAudioTokenizer(
|
| 130 |
n_filters=config['n_filters'],
|
|
|
|
| 139 |
device=device
|
| 140 |
).to(device)
|
| 141 |
|
|
|
|
| 142 |
print("Loading checkpoint...")
|
| 143 |
checkpoint = torch.load(checkpoint_path, map_location=device, weights_only=False)
|
| 144 |
|
|
|
|
| 147 |
else:
|
| 148 |
state_dict = checkpoint
|
| 149 |
|
|
|
|
| 150 |
new_state_dict = {}
|
| 151 |
for k, v in state_dict.items():
|
| 152 |
if k.startswith('module.'):
|
|
|
|
| 156 |
|
| 157 |
model.load_state_dict(new_state_dict, strict=False)
|
| 158 |
|
|
|
|
| 159 |
print("Fixing inference issues...")
|
| 160 |
model = fix_all_inference_issues(model)
|
|
|
|
| 161 |
|
| 162 |
return model
|
| 163 |
|
| 164 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 165 |
warnings.filterwarnings("ignore")
|
| 166 |
|
|
|
|
| 167 |
OUTPUT_DIR = "/home/ubuntu/data_boson_44.1khz"
|
| 168 |
BATCH_SIZE = 32
|
| 169 |
SAMPLE_RATE = 44100
|
| 170 |
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 171 |
DATASET_PATH = "/home/ubuntu/ttsar/Layla/src_bpe_2/Qanary_data"
|
| 172 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 173 |
print(f"Using device: {DEVICE}")
|
| 174 |
|
|
|
|
| 175 |
os.chdir("/home/ubuntu/ttsar/boson_audio_codec/audio_processing")
|
| 176 |
|
|
|
|
| 177 |
from datasets import load_from_disk
|
| 178 |
|
|
|
|
| 179 |
print(f"Loading dataset from: {DATASET_PATH}")
|
| 180 |
ds = load_from_disk(DATASET_PATH)
|
| 181 |
print(f"Dataset info: {ds}")
|
| 182 |
|
|
|
|
| 183 |
columns_to_remove = ['spk', 'duration', 'codes', 'input_ids', 'attention_mask']
|
| 184 |
existing_columns = [col for col in columns_to_remove if col in ds.column_names]
|
| 185 |
if existing_columns:
|
|
|
|
| 191 |
os.makedirs(OUTPUT_DIR, exist_ok=True)
|
| 192 |
print(f"Output directory '{OUTPUT_DIR}' is ready.")
|
| 193 |
|
|
|
|
| 194 |
print("Checking for already processed files...")
|
| 195 |
|
| 196 |
+
|
| 197 |
def get_output_path(audio_path):
|
| 198 |
base_name = Path(audio_path).stem
|
| 199 |
return os.path.join(OUTPUT_DIR, f"{base_name}.pt")
|
| 200 |
|
| 201 |
+
|
| 202 |
original_count = len(df)
|
| 203 |
df['output_exists'] = df['filename'].apply(lambda x: os.path.exists(get_output_path(x)))
|
| 204 |
df_filtered = df[~df['output_exists']].copy()
|
|
|
|
| 211 |
print("All files have already been processed!")
|
| 212 |
exit()
|
| 213 |
|
|
|
|
| 214 |
print("Loading Higgs Audio Tokenizer model...")
|
|
|
|
| 215 |
from transformers import HubertModel
|
| 216 |
from higgs_audio_tokenizer import HiggsAudioTokenizer
|
| 217 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 218 |
checkpoint_path = '/home/ubuntu/ttsar/boson_audio_codec/audio_processing/outputs_CQT/checkpoints/step_99000.pth'
|
| 219 |
config_path = '/home/ubuntu/ttsar/boson_audio_codec/audio_processing/config copy.json'
|
| 220 |
device = 'cuda'
|
| 221 |
+
|
| 222 |
model = inference_pipeline(checkpoint_path, config_path, device)
|
| 223 |
_ = model.eval()
|
|
|
|
| 224 |
model = remove_weight_norms_from_model(model)
|
|
|
|
| 225 |
print(f"Model loaded on {DEVICE}")
|
| 226 |
|
|
|
|
| 227 |
hop_length = model.hop_length
|
| 228 |
print(f"Encoder hop length: {hop_length}")
|
| 229 |
|
|
|
|
| 230 |
print(f"\nStarting batch processing with batch size {BATCH_SIZE}...")
|
| 231 |
|
|
|
|
| 232 |
filenames = df_filtered['filename'].tolist()
|
| 233 |
total_processed = 0
|
| 234 |
total_errors = 0
|
|
|
|
| 242 |
batch_lengths = []
|
| 243 |
batch_outputs = []
|
| 244 |
|
|
|
|
| 245 |
for filename in batch_filenames:
|
| 246 |
output_path = get_output_path(filename)
|
| 247 |
|
|
|
|
| 248 |
if os.path.exists(output_path):
|
| 249 |
continue
|
| 250 |
|
| 251 |
try:
|
|
|
|
| 252 |
wav, _ = librosa.load(filename, sr=SAMPLE_RATE)
|
| 253 |
wav_tensor = torch.from_numpy(wav).float()
|
| 254 |
|
|
|
|
| 264 |
if not batch_audio:
|
| 265 |
continue
|
| 266 |
|
|
|
|
| 267 |
max_len = max(len(x) for x in batch_audio)
|
| 268 |
padded_batch = []
|
| 269 |
|
|
|
|
| 271 |
pad_len = max_len - len(audio)
|
| 272 |
if pad_len > 0:
|
| 273 |
audio = F.pad(audio, (0, pad_len), mode='constant', value=0)
|
|
|
|
| 274 |
padded_batch.append(audio)
|
| 275 |
|
| 276 |
+
batch_tensor = torch.stack(padded_batch, dim=0)
|
| 277 |
+
batch_tensor = batch_tensor.unsqueeze(1)
|
|
|
|
|
|
|
|
|
|
| 278 |
batch_tensor = batch_tensor.to(DEVICE)
|
| 279 |
|
|
|
|
| 280 |
try:
|
| 281 |
encoded = encode_batch(model, batch_tensor)
|
| 282 |
+
codes = encoded.audio_codes
|
| 283 |
|
|
|
|
| 284 |
for idx, (output_path, orig_len) in enumerate(zip(batch_outputs, batch_lengths)):
|
|
|
|
| 285 |
true_code_len = int(np.ceil(orig_len / hop_length))
|
| 286 |
|
|
|
|
| 287 |
item_codes = codes[idx, :, :true_code_len].cpu()
|
| 288 |
|
|
|
|
| 289 |
torch.save(item_codes, output_path)
|
| 290 |
total_processed += 1
|
| 291 |
|
|
|
|
| 301 |
print(f"Errors encountered: {total_errors} files")
|
| 302 |
print(f"Output directory: {OUTPUT_DIR}")
|
| 303 |
|
|
|
|
| 304 |
final_count = len(list(Path(OUTPUT_DIR).glob("*.pt")))
|
| 305 |
print(f"Total .pt files in output: {final_count}")
|