| # import warnings | |
| # warnings.simplefilter(action='ignore', category=FutureWarning) | |
| # import itertools | |
| # import os | |
| # import time | |
| # import argparse | |
| # import json | |
| # import torch | |
| # import torch.nn.functional as F | |
| # from torch.utils.tensorboard import SummaryWriter | |
| # from torch.utils.data import DistributedSampler, DataLoader | |
| # import torch.multiprocessing as mp | |
| # from torch.distributed import init_process_group | |
| # from torch.nn.parallel import DistributedDataParallel | |
| # from env import AttrDict, build_env | |
| # from meldataset import MelDataset, mel_spectrogram, get_dataset_filelist | |
| # from models import Generator, MultiPeriodDiscriminator, feature_loss, generator_loss,\ | |
| # discriminator_loss, discriminator_TPRLS_loss, generator_TPRLS_loss, MultiScaleSubbandCQTDiscriminator | |
| # from utils import plot_spectrogram, scan_checkpoint, load_checkpoint, save_checkpoint | |
| # from stft import TorchSTFT | |
| # from Utils.JDC.model import JDCNet | |
| # torch.backends.cudnn.benchmark = True | |
| # def train(rank, a, h): | |
| # if h.num_gpus > 1: | |
| # init_process_group(backend=h.dist_config['dist_backend'], init_method=h.dist_config['dist_url'], | |
| # world_size=h.dist_config['world_size'] * h.num_gpus, rank=rank) | |
| # torch.cuda.manual_seed(h.seed) | |
| # device = torch.device('cuda:{:d}'.format(rank)) | |
| # F0_model = JDCNet(num_class=1, seq_len=192) | |
| # params = torch.load(h.F0_path)['net'] | |
| # F0_model.load_state_dict(params) | |
| # generator = Generator(h, F0_model, device=device).to(device) | |
| # mpd = MultiPeriodDiscriminator().to(device) | |
| # msd = MultiScaleSubbandCQTDiscriminator().to(device) | |
| # stft = TorchSTFT(filter_length=h.gen_istft_n_fft, hop_length=h.gen_istft_hop_size, win_length=h.gen_istft_n_fft).to(device) | |
| # if rank == 0: | |
| # print(generator) | |
| # os.makedirs(a.checkpoint_path, exist_ok=True) | |
| # print("checkpoints directory : ", a.checkpoint_path) | |
| # if os.path.isdir(a.checkpoint_path): | |
| # cp_g = scan_checkpoint(a.checkpoint_path, 'g_') | |
| # cp_do = scan_checkpoint(a.checkpoint_path, 'do_') | |
| # steps = 0 | |
| # if cp_g is None or cp_do is None: | |
| # state_dict_do = None | |
| # last_epoch = -1 | |
| # else: | |
| # state_dict_g = load_checkpoint(cp_g, device) | |
| # state_dict_do = load_checkpoint(cp_do, device) | |
| # generator.load_state_dict(state_dict_g['generator']) | |
| # mpd.load_state_dict(state_dict_do['mpd']) | |
| # msd.load_state_dict(state_dict_do['msd']) | |
| # steps = state_dict_do['steps'] + 1 | |
| # last_epoch = state_dict_do['epoch'] | |
| # if h.num_gpus > 1: | |
| # generator = DistributedDataParallel(generator, device_ids=[rank], find_unused_parameters=True).to(device) | |
| # mpd = DistributedDataParallel(mpd, device_ids=[rank]).to(device) | |
| # msd = DistributedDataParallel(msd, device_ids=[rank]).to(device) | |
| # optim_g = torch.optim.AdamW(generator.parameters(), h.learning_rate, betas=[h.adam_b1, h.adam_b2]) | |
| # optim_d = torch.optim.AdamW(itertools.chain(msd.parameters(), mpd.parameters()), | |
| # h.learning_rate, betas=[h.adam_b1, h.adam_b2]) | |
| # if state_dict_do is not None: | |
| # optim_g.load_state_dict(state_dict_do['optim_g']) | |
| # optim_d.load_state_dict(state_dict_do['optim_d']) | |
| # scheduler_g = torch.optim.lr_scheduler.ExponentialLR(optim_g, gamma=h.lr_decay, last_epoch=last_epoch) | |
| # scheduler_d = torch.optim.lr_scheduler.ExponentialLR(optim_d, gamma=h.lr_decay, last_epoch=last_epoch) | |
| # training_filelist, validation_filelist = get_dataset_filelist(a) | |
| # trainset = MelDataset(training_filelist, h.segment_size, h.n_fft, h.num_mels, | |
| # h.hop_size, h.win_size, h.sampling_rate, h.fmin, h.fmax, n_cache_reuse=0, | |
| # shuffle=False if h.num_gpus > 1 else True, fmax_loss=h.fmax_for_loss, device=device, | |
| # fine_tuning=a.fine_tuning, base_mels_path=a.input_mels_dir) | |
| # train_sampler = DistributedSampler(trainset) if h.num_gpus > 1 else None | |
| # train_loader = DataLoader(trainset, num_workers=h.num_workers, shuffle=False, | |
| # sampler=train_sampler, | |
| # batch_size=h.batch_size, | |
| # pin_memory=True, | |
| # drop_last=True) | |
| # if rank == 0: | |
| # validset = MelDataset(validation_filelist, h.segment_size, h.n_fft, h.num_mels, | |
| # h.hop_size, h.win_size, h.sampling_rate, h.fmin, h.fmax, False, False, n_cache_reuse=0, | |
| # fmax_loss=h.fmax_for_loss, device=device, fine_tuning=a.fine_tuning, | |
| # base_mels_path=a.input_mels_dir) | |
| # validation_loader = DataLoader(validset, num_workers=1, shuffle=False, | |
| # sampler=None, | |
| # batch_size=1, | |
| # pin_memory=True, | |
| # drop_last=True) | |
| # sw = SummaryWriter(os.path.join(a.checkpoint_path, 'logs')) | |
| # generator.train() | |
| # mpd.train() | |
| # msd.train() | |
| # for epoch in range(max(0, last_epoch), a.training_epochs): | |
| # if rank == 0: | |
| # start = time.time() | |
| # print("Epoch: {}".format(epoch+1)) | |
| # if h.num_gpus > 1: | |
| # train_sampler.set_epoch(epoch) | |
| # for i, batch in enumerate(train_loader): | |
| # if rank == 0: | |
| # start_b = time.time() | |
| # x, y, _, y_mel = batch | |
| # x = torch.autograd.Variable(x.to(device, non_blocking=True)) | |
| # y = torch.autograd.Variable(y.to(device, non_blocking=True)) | |
| # y_mel = torch.autograd.Variable(y_mel.to(device, non_blocking=True)) | |
| # y = y.unsqueeze(1) | |
| # # y_g_hat = generator(x) | |
| # spec, phase = generator(x) | |
| # y_g_hat = stft.inverse(spec, phase) | |
| # y_g_hat_mel = mel_spectrogram(y_g_hat.squeeze(1), h.n_fft, h.num_mels, h.sampling_rate, h.hop_size, h.win_size, | |
| # h.fmin, h.fmax_for_loss) | |
| # optim_d.zero_grad() | |
| # # MPD | |
| # y_df_hat_r, y_df_hat_g, _, _ = mpd(y, y_g_hat.detach()) | |
| # loss_disc_f, losses_disc_f_r, losses_disc_f_g = discriminator_loss(y_df_hat_r, y_df_hat_g) | |
| # loss_disc_f += discriminator_TPRLS_loss(y_df_hat_r, y_df_hat_g) | |
| # # MSD | |
| # y_ds_hat_r, y_ds_hat_g, _, _ = msd(y, y_g_hat.detach()) | |
| # loss_disc_s, losses_disc_s_r, losses_disc_s_g = discriminator_loss(y_ds_hat_r, y_ds_hat_g) | |
| # loss_disc_s += discriminator_TPRLS_loss(y_ds_hat_r, y_ds_hat_g) | |
| # loss_disc_all = loss_disc_s + loss_disc_f | |
| # loss_disc_all.backward() | |
| # optim_d.step() | |
| # # Generator | |
| # optim_g.zero_grad() | |
| # # L1 Mel-Spectrogram Loss | |
| # loss_mel = F.l1_loss(y_mel, y_g_hat_mel) * 45 | |
| # y_df_hat_r, y_df_hat_g, fmap_f_r, fmap_f_g = mpd(y, y_g_hat) | |
| # y_ds_hat_r, y_ds_hat_g, fmap_s_r, fmap_s_g = msd(y, y_g_hat) | |
| # loss_fm_f = feature_loss(fmap_f_r, fmap_f_g) | |
| # loss_fm_s = feature_loss(fmap_s_r, fmap_s_g) | |
| # loss_gen_f, losses_gen_f = generator_loss(y_df_hat_g) | |
| # loss_gen_s, losses_gen_s = generator_loss(y_ds_hat_g) | |
| # loss_gen_f += generator_TPRLS_loss(y_df_hat_r, y_df_hat_g) | |
| # loss_gen_s += generator_TPRLS_loss(y_ds_hat_r, y_ds_hat_g) | |
| # loss_gen_all = loss_gen_s + loss_gen_f + loss_fm_s + loss_fm_f + loss_mel | |
| # loss_gen_all.backward() | |
| # optim_g.step() | |
| # if rank == 0: | |
| # # STDOUT logging | |
| # if steps % a.stdout_interval == 0: | |
| # with torch.no_grad(): | |
| # mel_error = F.l1_loss(y_mel, y_g_hat_mel).item() | |
| # print('Steps : {:d}, Gen Loss Total : {:4.3f}, Mel-Spec. Error : {:4.3f}, s/b : {:4.3f}'. | |
| # format(steps, loss_gen_all, mel_error, time.time() - start_b)) | |
| # # checkpointing | |
| # if steps % a.checkpoint_interval == 0 and steps != 0: | |
| # checkpoint_path = "{}/g_{:08d}".format(a.checkpoint_path, steps) | |
| # save_checkpoint(checkpoint_path, | |
| # {'generator': (generator.module if h.num_gpus > 1 else generator).state_dict()}) | |
| # checkpoint_path = "{}/do_{:08d}".format(a.checkpoint_path, steps) | |
| # save_checkpoint(checkpoint_path, | |
| # {'mpd': (mpd.module if h.num_gpus > 1 | |
| # else mpd).state_dict(), | |
| # 'msd': (msd.module if h.num_gpus > 1 | |
| # else msd).state_dict(), | |
| # 'optim_g': optim_g.state_dict(), 'optim_d': optim_d.state_dict(), 'steps': steps, | |
| # 'epoch': epoch}) | |
| # # Tensorboard summary logging | |
| # if steps % a.summary_interval == 0: | |
| # sw.add_scalar("training/gen_loss_total", loss_gen_all, steps) | |
| # sw.add_scalar("training/mel_spec_error", mel_error, steps) | |
| # # Validation | |
| # if steps % a.validation_interval == 0: # and steps != 0: | |
| # generator.eval() | |
| # torch.cuda.empty_cache() | |
| # val_err_tot = 0 | |
| # with torch.no_grad(): | |
| # for j, batch in enumerate(validation_loader): | |
| # x, y, _, y_mel = batch | |
| # # y_g_hat = generator(x.to(device)) | |
| # spec, phase = generator(x.to(device)) | |
| # y_g_hat = stft.inverse(spec, phase) | |
| # y_mel = torch.autograd.Variable(y_mel.to(device, non_blocking=True)) | |
| # y_g_hat_mel = mel_spectrogram(y_g_hat.squeeze(1), h.n_fft, h.num_mels, h.sampling_rate, | |
| # h.hop_size, h.win_size, | |
| # h.fmin, h.fmax_for_loss) | |
| # val_err_tot += F.l1_loss(y_mel, y_g_hat_mel).item() | |
| # if j <= 4: | |
| # if steps == 0: | |
| # sw.add_audio('gt/y_{}'.format(j), y[0], steps, h.sampling_rate) | |
| # sw.add_figure('gt/y_spec_{}'.format(j), plot_spectrogram(x[0]), steps) | |
| # sw.add_audio('generated/y_hat_{}'.format(j), y_g_hat[0], steps, h.sampling_rate) | |
| # y_hat_spec = mel_spectrogram(y_g_hat.squeeze(1), h.n_fft, h.num_mels, | |
| # h.sampling_rate, h.hop_size, h.win_size, | |
| # h.fmin, h.fmax) | |
| # sw.add_figure('generated/y_hat_spec_{}'.format(j), | |
| # plot_spectrogram(y_hat_spec.squeeze(0).cpu().numpy()), steps) | |
| # val_err = val_err_tot / (j+1) | |
| # sw.add_scalar("validation/mel_spec_error", val_err, steps) | |
| # generator.train() | |
| # steps += 1 | |
| # scheduler_g.step() | |
| # scheduler_d.step() | |
| # if rank == 0: | |
| # print('Time taken for epoch {} is {} sec\n'.format(epoch + 1, int(time.time() - start))) | |
| # def main(): | |
| # print('Initializing Training Process..') | |
| # parser = argparse.ArgumentParser() | |
| # parser.add_argument('--group_name', default=None) | |
| # parser.add_argument('--input_wavs_dir', default='') | |
| # parser.add_argument('--input_mels_dir', default='ft_dataset') | |
| # # parser.add_argument('--input_training_file', default='/home/ubuntu/RINGFORMER/LJSpeech-1.1/training.txt') | |
| # parser.add_argument('--input_training_file', default='/home/ubuntu/RINGFORMER/LJSpeech-1.1/validation.txt') | |
| # parser.add_argument('--input_validation_file', default='/home/ubuntu/RINGFORMER/LJSpeech-1.1/validation.txt') | |
| # parser.add_argument('--checkpoint_path', default='cp_ringformer_24') | |
| # parser.add_argument('--config', default='config_v1.json') | |
| # parser.add_argument('--training_epochs', default=3100, type=int) | |
| # parser.add_argument('--stdout_interval', default=5, type=int) | |
| # parser.add_argument('--checkpoint_interval', default=5000, type=int) | |
| # parser.add_argument('--summary_interval', default=100, type=int) | |
| # parser.add_argument('--validation_interval', default=1000, type=int) | |
| # parser.add_argument('--fine_tuning', default=False, type=bool) | |
| # a = parser.parse_args() | |
| # with open(a.config) as f: | |
| # data = f.read() | |
| # json_config = json.loads(data) | |
| # h = AttrDict(json_config) | |
| # build_env(a.config, 'config.json', a.checkpoint_path) | |
| # torch.manual_seed(h.seed) | |
| # if torch.cuda.is_available(): | |
| # torch.cuda.manual_seed(h.seed) | |
| # h.num_gpus = torch.cuda.device_count() | |
| # h.batch_size = int(h.batch_size / h.num_gpus) | |
| # print('Batch size per GPU :', h.batch_size) | |
| # else: | |
| # pass | |
| # if h.num_gpus > 1: | |
| # mp.spawn(train, nprocs=h.num_gpus, args=(a, h,)) | |
| # else: | |
| # train(0, a, h) | |
| # if __name__ == '__main__': | |
| # main() | |
| import warnings | |
| warnings.simplefilter(action='ignore', category=FutureWarning) | |
| import itertools | |
| import os | |
| import time | |
| import argparse | |
| import json | |
| import torch | |
| import torch.nn.functional as F | |
| from torch.utils.tensorboard import SummaryWriter | |
| from torch.utils.data import DistributedSampler, DataLoader | |
| import torch.multiprocessing as mp | |
| from torch.distributed import init_process_group | |
| from torch.nn.parallel import DistributedDataParallel | |
| from env import AttrDict, build_env | |
| from meldataset import MelDataset, mel_spectrogram, get_dataset_filelist | |
| from models import Generator, MultiPeriodDiscriminator, feature_loss, generator_loss,\ | |
| discriminator_loss, discriminator_TPRLS_loss, generator_TPRLS_loss, MultiScaleSubbandCQTDiscriminator | |
| from utils import plot_spectrogram, scan_checkpoint, load_checkpoint, save_checkpoint | |
| from stft import TorchSTFT | |
| from Utils.JDC.model import JDCNet | |
| from accelerate import Accelerator | |
| from accelerate.utils import LoggerType | |
| from accelerate import DistributedDataParallelKwargs | |
| torch.backends.cudnn.benchmark = True | |
| def train(accelerator, a, h): | |
| # if h.num_gpus > 1: | |
| # init_process_group(backend=h.dist_config['dist_backend'], init_method=h.dist_config['dist_url'], | |
| # world_size=h.dist_config['world_size'] * h.num_gpus, rank=rank) | |
| torch.cuda.manual_seed(h.seed) | |
| device = accelerator.device | |
| F0_model = JDCNet(num_class=1, seq_len=192) | |
| params = torch.load(h.F0_path)['model'] | |
| F0_model.load_state_dict(params) | |
| generator = Generator(h, F0_model).to(device) | |
| mpd = MultiPeriodDiscriminator().to(device) | |
| msd = MultiScaleSubbandCQTDiscriminator().to(device) | |
| stft = TorchSTFT(filter_length=h.gen_istft_n_fft, hop_length=h.gen_istft_hop_size, win_length=h.gen_istft_n_fft).to(device) | |
| with accelerator.main_process_first(): | |
| accelerator.print(generator) | |
| os.makedirs(a.checkpoint_path, exist_ok=True) | |
| accelerator.print("checkpoints directory : ", a.checkpoint_path) | |
| if os.path.isdir(a.checkpoint_path): | |
| cp_g = scan_checkpoint(a.checkpoint_path, 'g_') | |
| cp_do = scan_checkpoint(a.checkpoint_path, 'do_') | |
| steps = 0 | |
| if cp_g is None or cp_do is None: | |
| state_dict_do = None | |
| last_epoch = -1 | |
| else: | |
| state_dict_g = load_checkpoint(cp_g, device) | |
| state_dict_do = load_checkpoint(cp_do, device) | |
| generator.load_state_dict(state_dict_g['generator']) | |
| mpd.load_state_dict(state_dict_do['mpd']) | |
| msd.load_state_dict(state_dict_do['msd']) | |
| steps = state_dict_do['steps'] + 1 | |
| last_epoch = state_dict_do['epoch'] | |
| # if h.num_gpus > 1: | |
| generator = accelerator.prepare(generator).to(device) | |
| mpd = accelerator.prepare(mpd).to(device) | |
| msd = accelerator.prepare(msd).to(device) | |
| optim_g = accelerator.prepare(torch.optim.AdamW(generator.parameters(), h.learning_rate, betas=[h.adam_b1, h.adam_b2])) | |
| optim_d = accelerator.prepare(torch.optim.AdamW(itertools.chain(msd.parameters(), mpd.parameters()), | |
| h.learning_rate, betas=[h.adam_b1, h.adam_b2])) | |
| if state_dict_do is not None: | |
| optim_g.load_state_dict(state_dict_do['optim_g']) | |
| optim_d.load_state_dict(state_dict_do['optim_d']) | |
| scheduler_g = accelerator.prepare(torch.optim.lr_scheduler.ExponentialLR(optim_g, gamma=h.lr_decay, last_epoch=last_epoch)) | |
| scheduler_d = accelerator.prepare(torch.optim.lr_scheduler.ExponentialLR(optim_d, gamma=h.lr_decay, last_epoch=last_epoch)) | |
| training_filelist, validation_filelist = get_dataset_filelist(a) | |
| trainset = MelDataset(training_filelist, h.segment_size, h.n_fft, h.num_mels, | |
| h.hop_size, h.win_size, h.sampling_rate, h.fmin, h.fmax, n_cache_reuse=0, | |
| shuffle=False if h.num_gpus > 1 else True, fmax_loss=h.fmax_for_loss, device=device, | |
| fine_tuning=a.fine_tuning, base_mels_path=a.input_mels_dir) | |
| # train_sampler = DistributedSampler(trainset) if h.num_gpus > 1 else None | |
| accelerator.print("bs", h.batch_size) | |
| train_loader = DataLoader(trainset, num_workers=h.num_workers, shuffle=False, | |
| # sampler=train_sampler, | |
| batch_size=h.batch_size, | |
| pin_memory=True, | |
| drop_last=True) | |
| train_loader = accelerator.prepare(train_loader) | |
| validset = MelDataset(validation_filelist, h.segment_size, h.n_fft, h.num_mels, | |
| h.hop_size, h.win_size, h.sampling_rate, h.fmin, h.fmax, False, False, n_cache_reuse=0, | |
| fmax_loss=h.fmax_for_loss, device=device, fine_tuning=a.fine_tuning, | |
| base_mels_path=a.input_mels_dir) | |
| validation_loader = DataLoader(validset, num_workers=1, shuffle=False, | |
| sampler=None, | |
| batch_size=1, | |
| pin_memory=True, | |
| drop_last=True) | |
| sw = SummaryWriter(os.path.join(a.checkpoint_path, 'logs')) | |
| # validation_loader = accelerator.prepare(validation_loader) | |
| generator.train() | |
| mpd.train() | |
| msd.train() | |
| for epoch in range(max(0, last_epoch), a.training_epochs): | |
| with accelerator.main_process_first(): | |
| start = time.time() | |
| accelerator.print("Epoch: {}".format(epoch+1)) | |
| # if h.num_gpus > 1: | |
| # train_sampler.set_epoch(epoch) | |
| for i, batch in enumerate(train_loader): | |
| # with accelerator.main_process_first(): | |
| start_b = time.time() | |
| x, y, _, y_mel = batch | |
| x = torch.autograd.Variable(x.to(device, non_blocking=True)) | |
| y = torch.autograd.Variable(y.to(device, non_blocking=True)) | |
| y_mel = torch.autograd.Variable(y_mel.to(device, non_blocking=True)) | |
| y = y.unsqueeze(1) | |
| # y_g_hat = generator(x) | |
| spec, phase = generator(x) | |
| y_g_hat = stft.inverse(spec, phase) | |
| y_g_hat_mel = mel_spectrogram(y_g_hat.squeeze(1), h.n_fft, h.num_mels, h.sampling_rate, h.hop_size, h.win_size, | |
| h.fmin, h.fmax_for_loss) | |
| optim_d.zero_grad() | |
| # MPD | |
| y_df_hat_r, y_df_hat_g, _, _ = mpd(y, y_g_hat.detach()) | |
| loss_disc_f, losses_disc_f_r, losses_disc_f_g = discriminator_loss(y_df_hat_r, y_df_hat_g) | |
| loss_disc_f += discriminator_TPRLS_loss(y_df_hat_r, y_df_hat_g) | |
| # MSD | |
| y_ds_hat_r, y_ds_hat_g, _, _ = msd(y, y_g_hat.detach()) | |
| loss_disc_s, losses_disc_s_r, losses_disc_s_g = discriminator_loss(y_ds_hat_r, y_ds_hat_g) | |
| loss_disc_s += discriminator_TPRLS_loss(y_ds_hat_r, y_ds_hat_g) | |
| loss_disc_all = loss_disc_s + loss_disc_f | |
| accelerator.backward(loss_disc_all) | |
| # accelerator.clip_grad_norm_(mpd.parameters(), max_norm=10.0) | |
| # accelerator.clip_grad_norm_(msd.parameters(), max_norm=10.0) | |
| # loss_disc_all.backward() | |
| optim_d.step() | |
| # Generator | |
| optim_g.zero_grad() | |
| # L1 Mel-Spectrogram Loss | |
| loss_mel = F.l1_loss(y_mel, y_g_hat_mel) * 45 | |
| y_df_hat_r, y_df_hat_g, fmap_f_r, fmap_f_g = mpd(y, y_g_hat) | |
| y_ds_hat_r, y_ds_hat_g, fmap_s_r, fmap_s_g = msd(y, y_g_hat) | |
| loss_fm_f = feature_loss(fmap_f_r, fmap_f_g) | |
| loss_fm_s = feature_loss(fmap_s_r, fmap_s_g) | |
| loss_gen_f, losses_gen_f = generator_loss(y_df_hat_g) | |
| loss_gen_s, losses_gen_s = generator_loss(y_ds_hat_g) | |
| loss_gen_f += generator_TPRLS_loss(y_df_hat_r, y_df_hat_g) | |
| loss_gen_s += generator_TPRLS_loss(y_ds_hat_r, y_ds_hat_g) | |
| loss_gen_all = loss_gen_s + loss_gen_f + loss_fm_s + loss_fm_f + loss_mel | |
| accelerator.backward(loss_gen_all) | |
| # accelerator.clip_grad_norm_(generator.parameters(), max_norm=10.0) | |
| # loss_gen_all.backward() | |
| optim_g.step() | |
| # accelerator.print('done +',i) | |
| # STDOUT logging | |
| if steps % a.stdout_interval == 0: | |
| with accelerator.main_process_first(): | |
| with torch.no_grad(): | |
| mel_error = F.l1_loss(y_mel, y_g_hat_mel).item() | |
| accelerator.print('Steps : {:d}, Gen Loss Total : {:4.3f}, Disc Loss Total : {:4.3f}, Mel-Spec. Error : {:4.3f}, s/b : {:4.3f}'. | |
| format(steps, loss_gen_all, loss_disc_all, mel_error, time.time() - start_b)) | |
| # checkpointing | |
| # In the main code: | |
| # if steps % a.checkpoint_interval == 0 and steps != 0: | |
| # # with accelerator.main_process_first(): | |
| # # Unwrap the generator | |
| # unwrapped_generator = accelerator.unwrap_model(generator) | |
| # checkpoint_path = "{}/g_{:08d}".format(a.checkpoint_path, steps) | |
| # save_checkpoint(checkpoint_path, | |
| # {'generator': unwrapped_generator.state_dict()}) | |
| # # Unwrap discriminators | |
| # unwrapped_mpd = accelerator.unwrap_model(mpd) | |
| # unwrapped_msd = accelerator.unwrap_model(msd) | |
| # checkpoint_path = "{}/do_{:08d}".format(a.checkpoint_path, steps) | |
| # save_checkpoint(checkpoint_path, | |
| # {'mpd': unwrapped_mpd.state_dict(), | |
| # 'msd': unwrapped_msd.state_dict(), | |
| # 'optim_g': optim_g.state_dict(), | |
| # 'optim_d': optim_d.state_dict(), | |
| # 'steps': steps, | |
| # 'epoch': epoch}) | |
| if steps % a.checkpoint_interval == 0 and steps != 0: | |
| with accelerator.main_process_first(): | |
| checkpoint_path = "{}/g_{:08d}".format(a.checkpoint_path, steps) | |
| save_checkpoint(checkpoint_path, | |
| {'generator': (generator.module if h.num_gpus > 1 else generator).state_dict()}) | |
| checkpoint_path = "{}/do_{:08d}".format(a.checkpoint_path, steps) | |
| save_checkpoint(checkpoint_path, | |
| {'mpd': (mpd.module if h.num_gpus > 1 | |
| else mpd).state_dict(), | |
| 'msd': (msd.module if h.num_gpus > 1 | |
| else msd).state_dict(), | |
| 'optim_g': optim_g.state_dict(), 'optim_d': optim_d.state_dict(), 'steps': steps, | |
| 'epoch': epoch}) | |
| # Tensorboard summary logging | |
| if steps % a.summary_interval == 0: | |
| sw.add_scalar("training/gen_loss_total", loss_gen_all, steps) | |
| sw.add_scalar("training/mel_spec_error", mel_error, steps) | |
| # Validation | |
| if steps % a.validation_interval == 0: # and steps != 0: | |
| # with accelerator.main_process_first(): | |
| accelerator.print('evalution...') | |
| generator.eval() | |
| torch.cuda.empty_cache() | |
| val_err_tot = 0 | |
| with torch.no_grad(): | |
| for j, batch in enumerate(validation_loader): | |
| x, y, _, y_mel = batch | |
| # y_g_hat = generator(x.to(device)) | |
| spec, phase = generator(x.to('cuda')) | |
| y_g_hat = stft.inverse(spec, phase) | |
| y_mel = torch.autograd.Variable(y_mel.to('cuda', non_blocking=True)) | |
| y_g_hat_mel = mel_spectrogram(y_g_hat.squeeze(1), h.n_fft, h.num_mels, h.sampling_rate, | |
| h.hop_size, h.win_size, | |
| h.fmin, h.fmax_for_loss) | |
| accelerator.print('done: ',j) | |
| val_err_tot += F.l1_loss(y_mel, y_g_hat_mel).item() | |
| if j <= 4: | |
| if steps == 0: | |
| sw.add_audio('gt/y_{}'.format(j), y[0], steps, h.sampling_rate) | |
| sw.add_figure('gt/y_spec_{}'.format(j), plot_spectrogram(x[0]), steps) | |
| sw.add_audio('generated/y_hat_{}'.format(j), y_g_hat[0], steps, h.sampling_rate) | |
| y_hat_spec = mel_spectrogram(y_g_hat.squeeze(1), h.n_fft, h.num_mels, | |
| h.sampling_rate, h.hop_size, h.win_size, | |
| h.fmin, h.fmax) | |
| sw.add_figure('generated/y_hat_spec_{}'.format(j), | |
| plot_spectrogram(y_hat_spec.squeeze(0).cpu().numpy()), steps) | |
| val_err = val_err_tot / (j+1) | |
| sw.add_scalar("validation/mel_spec_error", val_err, steps) | |
| generator.train() | |
| steps += 1 | |
| scheduler_g.step() | |
| scheduler_d.step() | |
| # with accelerator.main_process_first(): | |
| accelerator.print('Time taken for epoch {} is {} sec\n'.format(epoch + 1, int(time.time() - start))) | |
| def main(): | |
| ddp_kwargs = DistributedDataParallelKwargs(find_unused_parameters=True) | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument('--group_name', default=None) | |
| parser.add_argument('--input_wavs_dir', default='') | |
| parser.add_argument('--input_mels_dir', default='ft_dataset') | |
| # parser.add_argument('--input_training_file', default='/home/ubuntu/RINGFORMER/LJSpeech-1.1/training.txt') | |
| parser.add_argument('--input_training_file', default='/home/ubuntu/respair/audio_files_over_2sec_SUB.txt') | |
| parser.add_argument('--input_validation_file', default='/home/ubuntu/RINGFORMER/LJSpeech-1.1/validation.txt') | |
| parser.add_argument('--checkpoint_path', default='cp_ringformer_44.1khz_NUM2') | |
| parser.add_argument('--config', default='config_v1.json') | |
| parser.add_argument('--training_epochs', default=3100, type=int) | |
| parser.add_argument('--stdout_interval', default=10, type=int) | |
| parser.add_argument('--checkpoint_interval', default=1000, type=int) | |
| parser.add_argument('--summary_interval', default=100, type=int) | |
| parser.add_argument('--validation_interval', default=1000, type=int) | |
| parser.add_argument('--fine_tuning', default=False, type=bool) | |
| a = parser.parse_args() | |
| accelerator = Accelerator(project_dir=a.checkpoint_path, split_batches=False, | |
| kwargs_handlers=[ddp_kwargs]) | |
| accelerator.print('Initializing Training Process..') | |
| with open(a.config) as f: | |
| data = f.read() | |
| json_config = json.loads(data) | |
| h = AttrDict(json_config) | |
| build_env(a.config, 'config.json', a.checkpoint_path) | |
| torch.manual_seed(h.seed) | |
| if torch.cuda.is_available(): | |
| torch.cuda.manual_seed(h.seed) | |
| h.num_gpus = torch.cuda.device_count() | |
| # h.batch_size = int(h.batch_size / h.num_gpus) | |
| # print('Batch size per GPU :', h.batch_size) | |
| else: | |
| pass | |
| # Pass accelerator to train function instead of rank | |
| train(accelerator, a, h) | |
| if __name__ == '__main__': | |
| main() | |