Create models.py
Browse files
Hiformer_Checkpoint_Libri_24khz/models.py
ADDED
|
@@ -0,0 +1,943 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn.functional as F
|
| 3 |
+
import torch.nn as nn
|
| 4 |
+
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
|
| 5 |
+
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
|
| 6 |
+
from utils import init_weights, get_padding
|
| 7 |
+
import numpy as np
|
| 8 |
+
from stft import TorchSTFT
|
| 9 |
+
import torchaudio
|
| 10 |
+
from nnAudio import features
|
| 11 |
+
from einops import rearrange
|
| 12 |
+
from norm2d import NormConv2d
|
| 13 |
+
from utils import get_padding
|
| 14 |
+
from munch import Munch
|
| 15 |
+
from conformer import Conformer
|
| 16 |
+
|
| 17 |
+
LRELU_SLOPE = 0.1
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
def get_2d_padding(kernel_size, dilation=(1, 1)):
|
| 21 |
+
return (
|
| 22 |
+
((kernel_size[0] - 1) * dilation[0]) // 2,
|
| 23 |
+
((kernel_size[1] - 1) * dilation[1]) // 2,
|
| 24 |
+
)
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
class ResBlock1(torch.nn.Module):
|
| 29 |
+
def __init__(self, h, channels, kernel_size=3, dilation=(1, 3, 5)):
|
| 30 |
+
super(ResBlock1, self).__init__()
|
| 31 |
+
self.h = h
|
| 32 |
+
self.convs1 = nn.ModuleList([
|
| 33 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
|
| 34 |
+
padding=get_padding(kernel_size, dilation[0]))),
|
| 35 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
|
| 36 |
+
padding=get_padding(kernel_size, dilation[1]))),
|
| 37 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
|
| 38 |
+
padding=get_padding(kernel_size, dilation[2])))
|
| 39 |
+
])
|
| 40 |
+
self.convs1.apply(init_weights)
|
| 41 |
+
|
| 42 |
+
self.convs2 = nn.ModuleList([
|
| 43 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
| 44 |
+
padding=get_padding(kernel_size, 1))),
|
| 45 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
| 46 |
+
padding=get_padding(kernel_size, 1))),
|
| 47 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
| 48 |
+
padding=get_padding(kernel_size, 1)))
|
| 49 |
+
])
|
| 50 |
+
self.convs2.apply(init_weights)
|
| 51 |
+
|
| 52 |
+
self.alpha1 = nn.ParameterList([nn.Parameter(torch.ones(1, channels, 1)) for i in range(len(self.convs1))])
|
| 53 |
+
self.alpha2 = nn.ParameterList([nn.Parameter(torch.ones(1, channels, 1)) for i in range(len(self.convs2))])
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
def forward(self, x):
|
| 57 |
+
for c1, c2, a1, a2 in zip(self.convs1, self.convs2, self.alpha1, self.alpha2):
|
| 58 |
+
xt = x + (1 / a1) * (torch.sin(a1 * x) ** 2) # Snake1D
|
| 59 |
+
xt = c1(xt)
|
| 60 |
+
xt = xt + (1 / a2) * (torch.sin(a2 * xt) ** 2) # Snake1D
|
| 61 |
+
xt = c2(xt)
|
| 62 |
+
x = xt + x
|
| 63 |
+
return x
|
| 64 |
+
|
| 65 |
+
def remove_weight_norm(self):
|
| 66 |
+
for l in self.convs1:
|
| 67 |
+
remove_weight_norm(l)
|
| 68 |
+
for l in self.convs2:
|
| 69 |
+
remove_weight_norm(l)
|
| 70 |
+
|
| 71 |
+
class ResBlock1_old(torch.nn.Module):
|
| 72 |
+
def __init__(self, h, channels, kernel_size=3, dilation=(1, 3, 5)):
|
| 73 |
+
super(ResBlock1, self).__init__()
|
| 74 |
+
self.h = h
|
| 75 |
+
self.convs1 = nn.ModuleList([
|
| 76 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
|
| 77 |
+
padding=get_padding(kernel_size, dilation[0]))),
|
| 78 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
|
| 79 |
+
padding=get_padding(kernel_size, dilation[1]))),
|
| 80 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
|
| 81 |
+
padding=get_padding(kernel_size, dilation[2])))
|
| 82 |
+
])
|
| 83 |
+
self.convs1.apply(init_weights)
|
| 84 |
+
|
| 85 |
+
self.convs2 = nn.ModuleList([
|
| 86 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
| 87 |
+
padding=get_padding(kernel_size, 1))),
|
| 88 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
| 89 |
+
padding=get_padding(kernel_size, 1))),
|
| 90 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
| 91 |
+
padding=get_padding(kernel_size, 1)))
|
| 92 |
+
])
|
| 93 |
+
self.convs2.apply(init_weights)
|
| 94 |
+
|
| 95 |
+
def forward(self, x):
|
| 96 |
+
for c1, c2 in zip(self.convs1, self.convs2):
|
| 97 |
+
xt = F.leaky_relu(x, LRELU_SLOPE)
|
| 98 |
+
xt = c1(xt)
|
| 99 |
+
xt = F.leaky_relu(xt, LRELU_SLOPE)
|
| 100 |
+
xt = c2(xt)
|
| 101 |
+
x = xt + x
|
| 102 |
+
return x
|
| 103 |
+
|
| 104 |
+
def remove_weight_norm(self):
|
| 105 |
+
for l in self.convs1:
|
| 106 |
+
remove_weight_norm(l)
|
| 107 |
+
for l in self.convs2:
|
| 108 |
+
remove_weight_norm(l)
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
class ResBlock2(torch.nn.Module):
|
| 112 |
+
def __init__(self, h, channels, kernel_size=3, dilation=(1, 3)):
|
| 113 |
+
super(ResBlock2, self).__init__()
|
| 114 |
+
self.h = h
|
| 115 |
+
self.convs = nn.ModuleList([
|
| 116 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
|
| 117 |
+
padding=get_padding(kernel_size, dilation[0]))),
|
| 118 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
|
| 119 |
+
padding=get_padding(kernel_size, dilation[1])))
|
| 120 |
+
])
|
| 121 |
+
self.convs.apply(init_weights)
|
| 122 |
+
|
| 123 |
+
def forward(self, x):
|
| 124 |
+
for c in self.convs:
|
| 125 |
+
xt = F.leaky_relu(x, LRELU_SLOPE)
|
| 126 |
+
xt = c(xt)
|
| 127 |
+
x = xt + x
|
| 128 |
+
return x
|
| 129 |
+
|
| 130 |
+
def remove_weight_norm(self):
|
| 131 |
+
for l in self.convs:
|
| 132 |
+
remove_weight_norm(l)
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
class SineGen(torch.nn.Module):
|
| 136 |
+
""" Definition of sine generator
|
| 137 |
+
SineGen(samp_rate, harmonic_num = 0,
|
| 138 |
+
sine_amp = 0.1, noise_std = 0.003,
|
| 139 |
+
voiced_threshold = 0,
|
| 140 |
+
flag_for_pulse=False)
|
| 141 |
+
samp_rate: sampling rate in Hz
|
| 142 |
+
harmonic_num: number of harmonic overtones (default 0)
|
| 143 |
+
sine_amp: amplitude of sine-wavefrom (default 0.1)
|
| 144 |
+
noise_std: std of Gaussian noise (default 0.003)
|
| 145 |
+
voiced_thoreshold: F0 threshold for U/V classification (default 0)
|
| 146 |
+
flag_for_pulse: this SinGen is used inside PulseGen (default False)
|
| 147 |
+
Note: when flag_for_pulse is True, the first time step of a voiced
|
| 148 |
+
segment is always sin(np.pi) or cos(0)
|
| 149 |
+
"""
|
| 150 |
+
|
| 151 |
+
def __init__(self, samp_rate, upsample_scale, harmonic_num=0,
|
| 152 |
+
sine_amp=0.1, noise_std=0.003,
|
| 153 |
+
voiced_threshold=0,
|
| 154 |
+
flag_for_pulse=False):
|
| 155 |
+
super(SineGen, self).__init__()
|
| 156 |
+
self.sine_amp = sine_amp
|
| 157 |
+
self.noise_std = noise_std
|
| 158 |
+
self.harmonic_num = harmonic_num
|
| 159 |
+
self.dim = self.harmonic_num + 1
|
| 160 |
+
self.sampling_rate = samp_rate
|
| 161 |
+
self.voiced_threshold = voiced_threshold
|
| 162 |
+
self.flag_for_pulse = flag_for_pulse
|
| 163 |
+
self.upsample_scale = upsample_scale
|
| 164 |
+
|
| 165 |
+
def _f02uv(self, f0):
|
| 166 |
+
# generate uv signal
|
| 167 |
+
uv = (f0 > self.voiced_threshold).type(torch.float32)
|
| 168 |
+
return uv
|
| 169 |
+
|
| 170 |
+
def _f02sine(self, f0_values):
|
| 171 |
+
""" f0_values: (batchsize, length, dim)
|
| 172 |
+
where dim indicates fundamental tone and overtones
|
| 173 |
+
"""
|
| 174 |
+
# convert to F0 in rad. The interger part n can be ignored
|
| 175 |
+
# because 2 * np.pi * n doesn't affect phase
|
| 176 |
+
rad_values = (f0_values / self.sampling_rate) % 1
|
| 177 |
+
|
| 178 |
+
# initial phase noise (no noise for fundamental component)
|
| 179 |
+
rand_ini = torch.rand(f0_values.shape[0], f0_values.shape[2], \
|
| 180 |
+
device=f0_values.device)
|
| 181 |
+
rand_ini[:, 0] = 0
|
| 182 |
+
rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini
|
| 183 |
+
|
| 184 |
+
# instantanouse phase sine[t] = sin(2*pi \sum_i=1 ^{t} rad)
|
| 185 |
+
if not self.flag_for_pulse:
|
| 186 |
+
# # for normal case
|
| 187 |
+
|
| 188 |
+
# # To prevent torch.cumsum numerical overflow,
|
| 189 |
+
# # it is necessary to add -1 whenever \sum_k=1^n rad_value_k > 1.
|
| 190 |
+
# # Buffer tmp_over_one_idx indicates the time step to add -1.
|
| 191 |
+
# # This will not change F0 of sine because (x-1) * 2*pi = x * 2*pi
|
| 192 |
+
# tmp_over_one = torch.cumsum(rad_values, 1) % 1
|
| 193 |
+
# tmp_over_one_idx = (padDiff(tmp_over_one)) < 0
|
| 194 |
+
# cumsum_shift = torch.zeros_like(rad_values)
|
| 195 |
+
# cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
|
| 196 |
+
|
| 197 |
+
# phase = torch.cumsum(rad_values, dim=1) * 2 * np.pi
|
| 198 |
+
rad_values = torch.nn.functional.interpolate(rad_values.transpose(1, 2),
|
| 199 |
+
scale_factor=1/self.upsample_scale,
|
| 200 |
+
mode="linear").transpose(1, 2)
|
| 201 |
+
|
| 202 |
+
# tmp_over_one = torch.cumsum(rad_values, 1) % 1
|
| 203 |
+
# tmp_over_one_idx = (padDiff(tmp_over_one)) < 0
|
| 204 |
+
# cumsum_shift = torch.zeros_like(rad_values)
|
| 205 |
+
# cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
|
| 206 |
+
|
| 207 |
+
phase = torch.cumsum(rad_values, dim=1) * 2 * np.pi
|
| 208 |
+
phase = torch.nn.functional.interpolate(phase.transpose(1, 2) * self.upsample_scale,
|
| 209 |
+
scale_factor=self.upsample_scale, mode="linear").transpose(1, 2)
|
| 210 |
+
sines = torch.sin(phase)
|
| 211 |
+
|
| 212 |
+
else:
|
| 213 |
+
# If necessary, make sure that the first time step of every
|
| 214 |
+
# voiced segments is sin(pi) or cos(0)
|
| 215 |
+
# This is used for pulse-train generation
|
| 216 |
+
|
| 217 |
+
# identify the last time step in unvoiced segments
|
| 218 |
+
uv = self._f02uv(f0_values)
|
| 219 |
+
uv_1 = torch.roll(uv, shifts=-1, dims=1)
|
| 220 |
+
uv_1[:, -1, :] = 1
|
| 221 |
+
u_loc = (uv < 1) * (uv_1 > 0)
|
| 222 |
+
|
| 223 |
+
# get the instantanouse phase
|
| 224 |
+
tmp_cumsum = torch.cumsum(rad_values, dim=1)
|
| 225 |
+
# different batch needs to be processed differently
|
| 226 |
+
for idx in range(f0_values.shape[0]):
|
| 227 |
+
temp_sum = tmp_cumsum[idx, u_loc[idx, :, 0], :]
|
| 228 |
+
temp_sum[1:, :] = temp_sum[1:, :] - temp_sum[0:-1, :]
|
| 229 |
+
# stores the accumulation of i.phase within
|
| 230 |
+
# each voiced segments
|
| 231 |
+
tmp_cumsum[idx, :, :] = 0
|
| 232 |
+
tmp_cumsum[idx, u_loc[idx, :, 0], :] = temp_sum
|
| 233 |
+
|
| 234 |
+
# rad_values - tmp_cumsum: remove the accumulation of i.phase
|
| 235 |
+
# within the previous voiced segment.
|
| 236 |
+
i_phase = torch.cumsum(rad_values - tmp_cumsum, dim=1)
|
| 237 |
+
|
| 238 |
+
# get the sines
|
| 239 |
+
sines = torch.cos(i_phase * 2 * np.pi)
|
| 240 |
+
return sines
|
| 241 |
+
|
| 242 |
+
def forward(self, f0):
|
| 243 |
+
""" sine_tensor, uv = forward(f0)
|
| 244 |
+
input F0: tensor(batchsize=1, length, dim=1)
|
| 245 |
+
f0 for unvoiced steps should be 0
|
| 246 |
+
output sine_tensor: tensor(batchsize=1, length, dim)
|
| 247 |
+
output uv: tensor(batchsize=1, length, 1)
|
| 248 |
+
"""
|
| 249 |
+
f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim,
|
| 250 |
+
device=f0.device)
|
| 251 |
+
# fundamental component
|
| 252 |
+
fn = torch.multiply(f0, torch.FloatTensor([[range(1, self.harmonic_num + 2)]]).to(f0.device))
|
| 253 |
+
|
| 254 |
+
# generate sine waveforms
|
| 255 |
+
sine_waves = self._f02sine(fn) * self.sine_amp
|
| 256 |
+
|
| 257 |
+
# generate uv signal
|
| 258 |
+
# uv = torch.ones(f0.shape)
|
| 259 |
+
# uv = uv * (f0 > self.voiced_threshold)
|
| 260 |
+
uv = self._f02uv(f0)
|
| 261 |
+
|
| 262 |
+
# noise: for unvoiced should be similar to sine_amp
|
| 263 |
+
# std = self.sine_amp/3 -> max value ~ self.sine_amp
|
| 264 |
+
# . for voiced regions is self.noise_std
|
| 265 |
+
noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
|
| 266 |
+
noise = noise_amp * torch.randn_like(sine_waves)
|
| 267 |
+
|
| 268 |
+
# first: set the unvoiced part to 0 by uv
|
| 269 |
+
# then: additive noise
|
| 270 |
+
sine_waves = sine_waves * uv + noise
|
| 271 |
+
return sine_waves, uv, noise
|
| 272 |
+
|
| 273 |
+
|
| 274 |
+
class SourceModuleHnNSF(torch.nn.Module):
|
| 275 |
+
""" SourceModule for hn-nsf
|
| 276 |
+
SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
|
| 277 |
+
add_noise_std=0.003, voiced_threshod=0)
|
| 278 |
+
sampling_rate: sampling_rate in Hz
|
| 279 |
+
harmonic_num: number of harmonic above F0 (default: 0)
|
| 280 |
+
sine_amp: amplitude of sine source signal (default: 0.1)
|
| 281 |
+
add_noise_std: std of additive Gaussian noise (default: 0.003)
|
| 282 |
+
note that amplitude of noise in unvoiced is decided
|
| 283 |
+
by sine_amp
|
| 284 |
+
voiced_threshold: threhold to set U/V given F0 (default: 0)
|
| 285 |
+
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
|
| 286 |
+
F0_sampled (batchsize, length, 1)
|
| 287 |
+
Sine_source (batchsize, length, 1)
|
| 288 |
+
noise_source (batchsize, length 1)
|
| 289 |
+
uv (batchsize, length, 1)
|
| 290 |
+
"""
|
| 291 |
+
|
| 292 |
+
def __init__(self, sampling_rate, upsample_scale, harmonic_num=0, sine_amp=0.1,
|
| 293 |
+
add_noise_std=0.003, voiced_threshod=0):
|
| 294 |
+
super(SourceModuleHnNSF, self).__init__()
|
| 295 |
+
|
| 296 |
+
self.sine_amp = sine_amp
|
| 297 |
+
self.noise_std = add_noise_std
|
| 298 |
+
|
| 299 |
+
# to produce sine waveforms
|
| 300 |
+
self.l_sin_gen = SineGen(sampling_rate, upsample_scale, harmonic_num,
|
| 301 |
+
sine_amp, add_noise_std, voiced_threshod)
|
| 302 |
+
|
| 303 |
+
# to merge source harmonics into a single excitation
|
| 304 |
+
self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
|
| 305 |
+
self.l_tanh = torch.nn.Tanh()
|
| 306 |
+
|
| 307 |
+
def forward(self, x):
|
| 308 |
+
"""
|
| 309 |
+
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
|
| 310 |
+
F0_sampled (batchsize, length, 1)
|
| 311 |
+
Sine_source (batchsize, length, 1)
|
| 312 |
+
noise_source (batchsize, length 1)
|
| 313 |
+
"""
|
| 314 |
+
# source for harmonic branch
|
| 315 |
+
with torch.no_grad():
|
| 316 |
+
sine_wavs, uv, _ = self.l_sin_gen(x)
|
| 317 |
+
sine_merge = self.l_tanh(self.l_linear(sine_wavs))
|
| 318 |
+
|
| 319 |
+
# source for noise branch, in the same shape as uv
|
| 320 |
+
noise = torch.randn_like(uv) * self.sine_amp / 3
|
| 321 |
+
return sine_merge, noise, uv
|
| 322 |
+
def padDiff(x):
|
| 323 |
+
return F.pad(F.pad(x, (0,0,-1,1), 'constant', 0) - x, (0,0,0,-1), 'constant', 0)
|
| 324 |
+
|
| 325 |
+
|
| 326 |
+
|
| 327 |
+
class Generator(torch.nn.Module):
|
| 328 |
+
def __init__(self, h, F0_model):
|
| 329 |
+
super(Generator, self).__init__()
|
| 330 |
+
self.h = h
|
| 331 |
+
self.num_kernels = len(h.resblock_kernel_sizes)
|
| 332 |
+
self.num_upsamples = len(h.upsample_rates)
|
| 333 |
+
self.conv_pre = weight_norm(Conv1d(80, h.upsample_initial_channel, 7, 1, padding=3))
|
| 334 |
+
|
| 335 |
+
|
| 336 |
+
|
| 337 |
+
resblock = ResBlock1 if h.resblock == '1' else ResBlock2
|
| 338 |
+
|
| 339 |
+
self.m_source = SourceModuleHnNSF(
|
| 340 |
+
sampling_rate=h.sampling_rate,
|
| 341 |
+
upsample_scale=np.prod(h.upsample_rates) * h.gen_istft_hop_size,
|
| 342 |
+
harmonic_num=8, voiced_threshod=10)
|
| 343 |
+
|
| 344 |
+
self.f0_upsamp = torch.nn.Upsample(
|
| 345 |
+
scale_factor=np.prod(h.upsample_rates) * h.gen_istft_hop_size)
|
| 346 |
+
self.noise_convs = nn.ModuleList()
|
| 347 |
+
self.noise_res = nn.ModuleList()
|
| 348 |
+
|
| 349 |
+
self.F0_model = F0_model
|
| 350 |
+
|
| 351 |
+
self.ups = nn.ModuleList()
|
| 352 |
+
for i, (u, k) in enumerate(zip(h.upsample_rates, h.upsample_kernel_sizes)):
|
| 353 |
+
self.ups.append(weight_norm(
|
| 354 |
+
ConvTranspose1d(h.upsample_initial_channel//(2**i),
|
| 355 |
+
h.upsample_initial_channel//(2**(i+1)),
|
| 356 |
+
k,
|
| 357 |
+
u,
|
| 358 |
+
padding=(k-u)//2)))
|
| 359 |
+
|
| 360 |
+
c_cur = h.upsample_initial_channel // (2 ** (i + 1))
|
| 361 |
+
|
| 362 |
+
if i + 1 < len(h.upsample_rates): #
|
| 363 |
+
stride_f0 = np.prod(h.upsample_rates[i + 1:])
|
| 364 |
+
self.noise_convs.append(Conv1d(
|
| 365 |
+
h.gen_istft_n_fft + 2, c_cur, kernel_size=stride_f0 * 2, stride=stride_f0, padding=(stride_f0+1) // 2))
|
| 366 |
+
self.noise_res.append(resblock(h, c_cur, 7, [1,3,5]))
|
| 367 |
+
else:
|
| 368 |
+
self.noise_convs.append(Conv1d(h.gen_istft_n_fft + 2, c_cur, kernel_size=1))
|
| 369 |
+
self.noise_res.append(resblock(h, c_cur, 11, [1,3,5]))
|
| 370 |
+
|
| 371 |
+
self.alphas = nn.ParameterList()
|
| 372 |
+
self.alphas.append(nn.Parameter(torch.ones(1, h.upsample_initial_channel, 1)))
|
| 373 |
+
self.resblocks = nn.ModuleList()
|
| 374 |
+
for i in range(len(self.ups)):
|
| 375 |
+
ch = h.upsample_initial_channel//(2**(i+1))
|
| 376 |
+
self.alphas.append(nn.Parameter(torch.ones(1, ch, 1)))
|
| 377 |
+
for j, (k, d) in enumerate(
|
| 378 |
+
zip(h.resblock_kernel_sizes, h.resblock_dilation_sizes)):
|
| 379 |
+
self.resblocks.append(resblock(h, ch, k, d))
|
| 380 |
+
|
| 381 |
+
|
| 382 |
+
self.conformers = nn.ModuleList()
|
| 383 |
+
self.post_n_fft = h.gen_istft_n_fft
|
| 384 |
+
self.conv_post = weight_norm(Conv1d(128, self.post_n_fft + 2, 7, 1, padding=3))
|
| 385 |
+
|
| 386 |
+
for i in range(len(self.ups)):
|
| 387 |
+
ch = h.upsample_initial_channel // (2**i)
|
| 388 |
+
self.conformers.append(
|
| 389 |
+
Conformer(
|
| 390 |
+
dim=ch,
|
| 391 |
+
depth=2,
|
| 392 |
+
dim_head=64,
|
| 393 |
+
heads=8,
|
| 394 |
+
ff_mult=4,
|
| 395 |
+
conv_expansion_factor=2,
|
| 396 |
+
conv_kernel_size=31,
|
| 397 |
+
attn_dropout=0.1,
|
| 398 |
+
ff_dropout=0.1,
|
| 399 |
+
conv_dropout=0.1,
|
| 400 |
+
# device=self.device
|
| 401 |
+
)
|
| 402 |
+
)
|
| 403 |
+
|
| 404 |
+
self.ups.apply(init_weights)
|
| 405 |
+
self.conv_post.apply(init_weights)
|
| 406 |
+
self.reflection_pad = torch.nn.ReflectionPad1d((1, 0))
|
| 407 |
+
self.stft = TorchSTFT(filter_length=h.gen_istft_n_fft,
|
| 408 |
+
hop_length=h.gen_istft_hop_size,
|
| 409 |
+
win_length=h.gen_istft_n_fft)
|
| 410 |
+
|
| 411 |
+
|
| 412 |
+
|
| 413 |
+
def forward(self, x):
|
| 414 |
+
|
| 415 |
+
|
| 416 |
+
|
| 417 |
+
f0, _, _ = self.F0_model(x.unsqueeze(1))
|
| 418 |
+
if len(f0.shape) == 1:
|
| 419 |
+
f0 = f0.unsqueeze(0)
|
| 420 |
+
|
| 421 |
+
f0 = self.f0_upsamp(f0[:, None]).transpose(1, 2) # bs,n,t
|
| 422 |
+
|
| 423 |
+
har_source, _, _ = self.m_source(f0)
|
| 424 |
+
har_source = har_source.transpose(1, 2).squeeze(1)
|
| 425 |
+
har_spec, har_phase = self.stft.transform(har_source)
|
| 426 |
+
har = torch.cat([har_spec, har_phase], dim=1)
|
| 427 |
+
|
| 428 |
+
|
| 429 |
+
x = self.conv_pre(x)
|
| 430 |
+
|
| 431 |
+
for i in range(self.num_upsamples):
|
| 432 |
+
|
| 433 |
+
x = x + (1 / self.alphas[i]) * (torch.sin(self.alphas[i] * x) ** 2)
|
| 434 |
+
x = rearrange(x, "b f t -> b t f")
|
| 435 |
+
|
| 436 |
+
x = self.conformers[i](x)
|
| 437 |
+
|
| 438 |
+
x = rearrange(x, "b t f -> b f t")
|
| 439 |
+
|
| 440 |
+
# x = F.leaky_relu(x, LRELU_SLOPE)
|
| 441 |
+
x_source = self.noise_convs[i](har)
|
| 442 |
+
x_source = self.noise_res[i](x_source)
|
| 443 |
+
|
| 444 |
+
x = self.ups[i](x)
|
| 445 |
+
if i == self.num_upsamples - 1:
|
| 446 |
+
x = self.reflection_pad(x)
|
| 447 |
+
|
| 448 |
+
x = x + x_source
|
| 449 |
+
|
| 450 |
+
|
| 451 |
+
xs = None
|
| 452 |
+
for j in range(self.num_kernels):
|
| 453 |
+
if xs is None:
|
| 454 |
+
xs = self.resblocks[i*self.num_kernels+j](x)
|
| 455 |
+
else:
|
| 456 |
+
xs += self.resblocks[i*self.num_kernels+j](x)
|
| 457 |
+
x = xs / self.num_kernels
|
| 458 |
+
# x = F.leaky_relu(x)
|
| 459 |
+
|
| 460 |
+
|
| 461 |
+
x = x + (1 / self.alphas[i + 1]) * (torch.sin(self.alphas[i + 1] * x) ** 2)
|
| 462 |
+
|
| 463 |
+
x = self.conv_post(x)
|
| 464 |
+
spec = torch.exp(x[:,:self.post_n_fft // 2 + 1, :]).to(x.device)
|
| 465 |
+
phase = torch.sin(x[:, self.post_n_fft // 2 + 1:, :]).to(x.device)
|
| 466 |
+
|
| 467 |
+
return spec, phase
|
| 468 |
+
|
| 469 |
+
def remove_weight_norm(self):
|
| 470 |
+
print("Removing weight norm...")
|
| 471 |
+
for l in self.ups:
|
| 472 |
+
remove_weight_norm(l)
|
| 473 |
+
for l in self.resblocks:
|
| 474 |
+
l.remove_weight_norm()
|
| 475 |
+
remove_weight_norm(self.conv_pre)
|
| 476 |
+
remove_weight_norm(self.conv_post)
|
| 477 |
+
|
| 478 |
+
|
| 479 |
+
|
| 480 |
+
def stft(x, fft_size, hop_size, win_length, window):
|
| 481 |
+
"""Perform STFT and convert to magnitude spectrogram.
|
| 482 |
+
Args:
|
| 483 |
+
x (Tensor): Input signal tensor (B, T).
|
| 484 |
+
fft_size (int): FFT size.
|
| 485 |
+
hop_size (int): Hop size.
|
| 486 |
+
win_length (int): Window length.
|
| 487 |
+
window (str): Window function type.
|
| 488 |
+
Returns:
|
| 489 |
+
Tensor: Magnitude spectrogram (B, #frames, fft_size // 2 + 1).
|
| 490 |
+
"""
|
| 491 |
+
x_stft = torch.stft(x, fft_size, hop_size, win_length, window,
|
| 492 |
+
return_complex=True)
|
| 493 |
+
real = x_stft[..., 0]
|
| 494 |
+
imag = x_stft[..., 1]
|
| 495 |
+
|
| 496 |
+
# NOTE(kan-bayashi): clamp is needed to avoid nan or inf
|
| 497 |
+
return torch.abs(x_stft).transpose(2, 1)
|
| 498 |
+
|
| 499 |
+
class SpecDiscriminator(nn.Module):
|
| 500 |
+
"""docstring for Discriminator."""
|
| 501 |
+
|
| 502 |
+
def __init__(self, fft_size=1024, shift_size=120, win_length=600, window="hann_window", use_spectral_norm=False):
|
| 503 |
+
super(SpecDiscriminator, self).__init__()
|
| 504 |
+
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
| 505 |
+
self.fft_size = fft_size
|
| 506 |
+
self.shift_size = shift_size
|
| 507 |
+
self.win_length = win_length
|
| 508 |
+
self.window = getattr(torch, window)(win_length)
|
| 509 |
+
self.discriminators = nn.ModuleList([
|
| 510 |
+
norm_f(nn.Conv2d(1, 32, kernel_size=(3, 9), padding=(1, 4))),
|
| 511 |
+
norm_f(nn.Conv2d(32, 32, kernel_size=(3, 9), stride=(1,2), padding=(1, 4))),
|
| 512 |
+
norm_f(nn.Conv2d(32, 32, kernel_size=(3, 9), stride=(1,2), padding=(1, 4))),
|
| 513 |
+
norm_f(nn.Conv2d(32, 32, kernel_size=(3, 9), stride=(1,2), padding=(1, 4))),
|
| 514 |
+
norm_f(nn.Conv2d(32, 32, kernel_size=(3, 3), stride=(1,1), padding=(1, 1))),
|
| 515 |
+
])
|
| 516 |
+
|
| 517 |
+
self.out = norm_f(nn.Conv2d(32, 1, 3, 1, 1))
|
| 518 |
+
|
| 519 |
+
def forward(self, y):
|
| 520 |
+
|
| 521 |
+
fmap = []
|
| 522 |
+
y = y.squeeze(1)
|
| 523 |
+
y = stft(y, self.fft_size, self.shift_size, self.win_length, self.window.to(y.get_device()))
|
| 524 |
+
y = y.unsqueeze(1)
|
| 525 |
+
for i, d in enumerate(self.discriminators):
|
| 526 |
+
y = d(y)
|
| 527 |
+
y = F.leaky_relu(y, LRELU_SLOPE)
|
| 528 |
+
fmap.append(y)
|
| 529 |
+
|
| 530 |
+
y = self.out(y)
|
| 531 |
+
fmap.append(y)
|
| 532 |
+
|
| 533 |
+
return torch.flatten(y, 1, -1), fmap
|
| 534 |
+
|
| 535 |
+
# class MultiResSpecDiscriminator(torch.nn.Module):
|
| 536 |
+
|
| 537 |
+
# def __init__(self,
|
| 538 |
+
# fft_sizes=[1024, 2048, 512],
|
| 539 |
+
# hop_sizes=[120, 240, 50],
|
| 540 |
+
# win_lengths=[600, 1200, 240],
|
| 541 |
+
# window="hann_window"):
|
| 542 |
+
|
| 543 |
+
# super(MultiResSpecDiscriminator, self).__init__()
|
| 544 |
+
# self.discriminators = nn.ModuleList([
|
| 545 |
+
# SpecDiscriminator(fft_sizes[0], hop_sizes[0], win_lengths[0], window),
|
| 546 |
+
# SpecDiscriminator(fft_sizes[1], hop_sizes[1], win_lengths[1], window),
|
| 547 |
+
# SpecDiscriminator(fft_sizes[2], hop_sizes[2], win_lengths[2], window)
|
| 548 |
+
# ])
|
| 549 |
+
|
| 550 |
+
# def forward(self, y, y_hat):
|
| 551 |
+
# y_d_rs = []
|
| 552 |
+
# y_d_gs = []
|
| 553 |
+
# fmap_rs = []
|
| 554 |
+
# fmap_gs = []
|
| 555 |
+
# for i, d in enumerate(self.discriminators):
|
| 556 |
+
# y_d_r, fmap_r = d(y)
|
| 557 |
+
# y_d_g, fmap_g = d(y_hat)
|
| 558 |
+
# y_d_rs.append(y_d_r)
|
| 559 |
+
# fmap_rs.append(fmap_r)
|
| 560 |
+
# y_d_gs.append(y_d_g)
|
| 561 |
+
# fmap_gs.append(fmap_g)
|
| 562 |
+
|
| 563 |
+
# return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
| 564 |
+
|
| 565 |
+
|
| 566 |
+
class DiscriminatorP(torch.nn.Module):
|
| 567 |
+
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
|
| 568 |
+
super(DiscriminatorP, self).__init__()
|
| 569 |
+
self.period = period
|
| 570 |
+
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
| 571 |
+
self.convs = nn.ModuleList([
|
| 572 |
+
norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
|
| 573 |
+
norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
|
| 574 |
+
norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
|
| 575 |
+
norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
|
| 576 |
+
norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(2, 0))),
|
| 577 |
+
])
|
| 578 |
+
self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
|
| 579 |
+
|
| 580 |
+
def forward(self, x):
|
| 581 |
+
fmap = []
|
| 582 |
+
|
| 583 |
+
# 1d to 2d
|
| 584 |
+
b, c, t = x.shape
|
| 585 |
+
if t % self.period != 0: # pad first
|
| 586 |
+
n_pad = self.period - (t % self.period)
|
| 587 |
+
x = F.pad(x, (0, n_pad), "reflect")
|
| 588 |
+
t = t + n_pad
|
| 589 |
+
x = x.view(b, c, t // self.period, self.period)
|
| 590 |
+
|
| 591 |
+
for l in self.convs:
|
| 592 |
+
x = l(x)
|
| 593 |
+
x = F.leaky_relu(x, LRELU_SLOPE)
|
| 594 |
+
fmap.append(x)
|
| 595 |
+
x = self.conv_post(x)
|
| 596 |
+
fmap.append(x)
|
| 597 |
+
x = torch.flatten(x, 1, -1)
|
| 598 |
+
|
| 599 |
+
return x, fmap
|
| 600 |
+
|
| 601 |
+
|
| 602 |
+
class MultiPeriodDiscriminator(torch.nn.Module):
|
| 603 |
+
def __init__(self):
|
| 604 |
+
super(MultiPeriodDiscriminator, self).__init__()
|
| 605 |
+
self.discriminators = nn.ModuleList([
|
| 606 |
+
DiscriminatorP(2),
|
| 607 |
+
DiscriminatorP(3),
|
| 608 |
+
DiscriminatorP(5),
|
| 609 |
+
DiscriminatorP(7),
|
| 610 |
+
DiscriminatorP(11),
|
| 611 |
+
])
|
| 612 |
+
|
| 613 |
+
def forward(self, y, y_hat):
|
| 614 |
+
y_d_rs = []
|
| 615 |
+
y_d_gs = []
|
| 616 |
+
fmap_rs = []
|
| 617 |
+
fmap_gs = []
|
| 618 |
+
for i, d in enumerate(self.discriminators):
|
| 619 |
+
y_d_r, fmap_r = d(y)
|
| 620 |
+
y_d_g, fmap_g = d(y_hat)
|
| 621 |
+
y_d_rs.append(y_d_r)
|
| 622 |
+
fmap_rs.append(fmap_r)
|
| 623 |
+
y_d_gs.append(y_d_g)
|
| 624 |
+
fmap_gs.append(fmap_g)
|
| 625 |
+
|
| 626 |
+
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
| 627 |
+
|
| 628 |
+
|
| 629 |
+
class DiscriminatorS(torch.nn.Module):
|
| 630 |
+
def __init__(self, use_spectral_norm=False):
|
| 631 |
+
super(DiscriminatorS, self).__init__()
|
| 632 |
+
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
| 633 |
+
self.convs = nn.ModuleList([
|
| 634 |
+
norm_f(Conv1d(1, 128, 15, 1, padding=7)),
|
| 635 |
+
norm_f(Conv1d(128, 128, 41, 2, groups=4, padding=20)),
|
| 636 |
+
norm_f(Conv1d(128, 256, 41, 2, groups=16, padding=20)),
|
| 637 |
+
norm_f(Conv1d(256, 512, 41, 4, groups=16, padding=20)),
|
| 638 |
+
norm_f(Conv1d(512, 1024, 41, 4, groups=16, padding=20)),
|
| 639 |
+
norm_f(Conv1d(1024, 1024, 41, 1, groups=16, padding=20)),
|
| 640 |
+
norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
|
| 641 |
+
])
|
| 642 |
+
self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
|
| 643 |
+
|
| 644 |
+
def forward(self, x):
|
| 645 |
+
fmap = []
|
| 646 |
+
for l in self.convs:
|
| 647 |
+
x = l(x)
|
| 648 |
+
x = F.leaky_relu(x, LRELU_SLOPE)
|
| 649 |
+
fmap.append(x)
|
| 650 |
+
x = self.conv_post(x)
|
| 651 |
+
fmap.append(x)
|
| 652 |
+
x = torch.flatten(x, 1, -1)
|
| 653 |
+
|
| 654 |
+
return x, fmap
|
| 655 |
+
|
| 656 |
+
|
| 657 |
+
class MultiScaleDiscriminator(torch.nn.Module):
|
| 658 |
+
def __init__(self):
|
| 659 |
+
super(MultiScaleDiscriminator, self).__init__()
|
| 660 |
+
self.discriminators = nn.ModuleList([
|
| 661 |
+
DiscriminatorS(use_spectral_norm=True),
|
| 662 |
+
DiscriminatorS(),
|
| 663 |
+
DiscriminatorS(),
|
| 664 |
+
])
|
| 665 |
+
self.meanpools = nn.ModuleList([
|
| 666 |
+
AvgPool1d(4, 2, padding=2),
|
| 667 |
+
AvgPool1d(4, 2, padding=2)
|
| 668 |
+
])
|
| 669 |
+
|
| 670 |
+
def forward(self, y, y_hat):
|
| 671 |
+
y_d_rs = []
|
| 672 |
+
y_d_gs = []
|
| 673 |
+
fmap_rs = []
|
| 674 |
+
fmap_gs = []
|
| 675 |
+
for i, d in enumerate(self.discriminators):
|
| 676 |
+
if i != 0:
|
| 677 |
+
y = self.meanpools[i-1](y)
|
| 678 |
+
y_hat = self.meanpools[i-1](y_hat)
|
| 679 |
+
y_d_r, fmap_r = d(y)
|
| 680 |
+
y_d_g, fmap_g = d(y_hat)
|
| 681 |
+
y_d_rs.append(y_d_r)
|
| 682 |
+
fmap_rs.append(fmap_r)
|
| 683 |
+
y_d_gs.append(y_d_g)
|
| 684 |
+
fmap_gs.append(fmap_g)
|
| 685 |
+
|
| 686 |
+
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
| 687 |
+
|
| 688 |
+
|
| 689 |
+
|
| 690 |
+
|
| 691 |
+
|
| 692 |
+
########################### from ringformer
|
| 693 |
+
|
| 694 |
+
# multiscale_subband_cfg = {
|
| 695 |
+
# "hop_lengths": [1024, 512, 512], # Doubled to maintain similar time resolution
|
| 696 |
+
# "sampling_rate": 44100, # New sampling rate
|
| 697 |
+
# "filters": 32, # Kept same as it controls initial feature dimension
|
| 698 |
+
# "max_filters": 1024, # Kept same as it's a maximum limit
|
| 699 |
+
# "filters_scale": 1, # Kept same as it's a scaling factor
|
| 700 |
+
# "dilations": [1, 2, 4], # Kept same as they control receptive field growth
|
| 701 |
+
# "in_channels": 1, # Kept same (mono audio)
|
| 702 |
+
# "out_channels": 1, # Kept same (mono audio)
|
| 703 |
+
# "n_octaves": [10, 10, 10], # Increased by 1 to handle higher frequency range
|
| 704 |
+
# "bins_per_octaves": [24, 36, 48], # Kept same as they control frequency resolution
|
| 705 |
+
# }
|
| 706 |
+
|
| 707 |
+
|
| 708 |
+
|
| 709 |
+
multiscale_subband_cfg = {
|
| 710 |
+
"hop_lengths": [512, 256, 256],
|
| 711 |
+
"sampling_rate": 24000,
|
| 712 |
+
"filters": 32,
|
| 713 |
+
"max_filters": 1024,
|
| 714 |
+
"filters_scale": 1,
|
| 715 |
+
"dilations": [1, 2, 4],
|
| 716 |
+
"in_channels": 1,
|
| 717 |
+
"out_channels": 1,
|
| 718 |
+
"n_octaves": [9, 9, 9],
|
| 719 |
+
"bins_per_octaves": [24, 36, 48],
|
| 720 |
+
}
|
| 721 |
+
|
| 722 |
+
class DiscriminatorCQT(nn.Module):
|
| 723 |
+
def __init__(self, cfg, hop_length, n_octaves, bins_per_octave):
|
| 724 |
+
super(DiscriminatorCQT, self).__init__()
|
| 725 |
+
self.cfg = cfg
|
| 726 |
+
|
| 727 |
+
self.filters = cfg.filters
|
| 728 |
+
self.max_filters = cfg.max_filters
|
| 729 |
+
self.filters_scale = cfg.filters_scale
|
| 730 |
+
self.kernel_size = (3, 9)
|
| 731 |
+
self.dilations = cfg.dilations
|
| 732 |
+
self.stride = (1, 2)
|
| 733 |
+
|
| 734 |
+
self.in_channels = cfg.in_channels
|
| 735 |
+
self.out_channels = cfg.out_channels
|
| 736 |
+
self.fs = cfg.sampling_rate
|
| 737 |
+
self.hop_length = hop_length
|
| 738 |
+
self.n_octaves = n_octaves
|
| 739 |
+
self.bins_per_octave = bins_per_octave
|
| 740 |
+
|
| 741 |
+
self.cqt_transform = features.cqt.CQT2010v2(
|
| 742 |
+
sr=self.fs * 2,
|
| 743 |
+
hop_length=self.hop_length,
|
| 744 |
+
n_bins=self.bins_per_octave * self.n_octaves,
|
| 745 |
+
bins_per_octave=self.bins_per_octave,
|
| 746 |
+
output_format="Complex",
|
| 747 |
+
pad_mode="constant",
|
| 748 |
+
)
|
| 749 |
+
|
| 750 |
+
self.conv_pres = nn.ModuleList()
|
| 751 |
+
for i in range(self.n_octaves):
|
| 752 |
+
self.conv_pres.append(
|
| 753 |
+
NormConv2d(
|
| 754 |
+
self.in_channels * 2,
|
| 755 |
+
self.in_channels * 2,
|
| 756 |
+
kernel_size=self.kernel_size,
|
| 757 |
+
padding=get_2d_padding(self.kernel_size),
|
| 758 |
+
)
|
| 759 |
+
)
|
| 760 |
+
|
| 761 |
+
self.convs = nn.ModuleList()
|
| 762 |
+
|
| 763 |
+
self.convs.append(
|
| 764 |
+
NormConv2d(
|
| 765 |
+
self.in_channels * 2,
|
| 766 |
+
self.filters,
|
| 767 |
+
kernel_size=self.kernel_size,
|
| 768 |
+
padding=get_2d_padding(self.kernel_size),
|
| 769 |
+
)
|
| 770 |
+
)
|
| 771 |
+
|
| 772 |
+
in_chs = min(self.filters_scale * self.filters, self.max_filters)
|
| 773 |
+
for i, dilation in enumerate(self.dilations):
|
| 774 |
+
out_chs = min(
|
| 775 |
+
(self.filters_scale ** (i + 1)) * self.filters, self.max_filters
|
| 776 |
+
)
|
| 777 |
+
self.convs.append(
|
| 778 |
+
NormConv2d(
|
| 779 |
+
in_chs,
|
| 780 |
+
out_chs,
|
| 781 |
+
kernel_size=self.kernel_size,
|
| 782 |
+
stride=self.stride,
|
| 783 |
+
dilation=(dilation, 1),
|
| 784 |
+
padding=get_2d_padding(self.kernel_size, (dilation, 1)),
|
| 785 |
+
norm="weight_norm",
|
| 786 |
+
)
|
| 787 |
+
)
|
| 788 |
+
in_chs = out_chs
|
| 789 |
+
out_chs = min(
|
| 790 |
+
(self.filters_scale ** (len(self.dilations) + 1)) * self.filters,
|
| 791 |
+
self.max_filters,
|
| 792 |
+
)
|
| 793 |
+
self.convs.append(
|
| 794 |
+
NormConv2d(
|
| 795 |
+
in_chs,
|
| 796 |
+
out_chs,
|
| 797 |
+
kernel_size=(self.kernel_size[0], self.kernel_size[0]),
|
| 798 |
+
padding=get_2d_padding((self.kernel_size[0], self.kernel_size[0])),
|
| 799 |
+
norm="weight_norm",
|
| 800 |
+
)
|
| 801 |
+
)
|
| 802 |
+
|
| 803 |
+
self.conv_post = NormConv2d(
|
| 804 |
+
out_chs,
|
| 805 |
+
self.out_channels,
|
| 806 |
+
kernel_size=(self.kernel_size[0], self.kernel_size[0]),
|
| 807 |
+
padding=get_2d_padding((self.kernel_size[0], self.kernel_size[0])),
|
| 808 |
+
norm="weight_norm",
|
| 809 |
+
)
|
| 810 |
+
|
| 811 |
+
self.activation = torch.nn.LeakyReLU(negative_slope=LRELU_SLOPE)
|
| 812 |
+
self.resample = torchaudio.transforms.Resample(
|
| 813 |
+
orig_freq=self.fs, new_freq=self.fs * 2
|
| 814 |
+
)
|
| 815 |
+
|
| 816 |
+
def forward(self, x):
|
| 817 |
+
fmap = []
|
| 818 |
+
|
| 819 |
+
x = self.resample(x)
|
| 820 |
+
|
| 821 |
+
z = self.cqt_transform(x)
|
| 822 |
+
|
| 823 |
+
z_amplitude = z[:, :, :, 0].unsqueeze(1)
|
| 824 |
+
z_phase = z[:, :, :, 1].unsqueeze(1)
|
| 825 |
+
|
| 826 |
+
z = torch.cat([z_amplitude, z_phase], dim=1)
|
| 827 |
+
z = rearrange(z, "b c w t -> b c t w")
|
| 828 |
+
|
| 829 |
+
latent_z = []
|
| 830 |
+
for i in range(self.n_octaves):
|
| 831 |
+
latent_z.append(
|
| 832 |
+
self.conv_pres[i](
|
| 833 |
+
z[
|
| 834 |
+
:,
|
| 835 |
+
:,
|
| 836 |
+
:,
|
| 837 |
+
i * self.bins_per_octave : (i + 1) * self.bins_per_octave,
|
| 838 |
+
]
|
| 839 |
+
)
|
| 840 |
+
)
|
| 841 |
+
latent_z = torch.cat(latent_z, dim=-1)
|
| 842 |
+
|
| 843 |
+
for i, l in enumerate(self.convs):
|
| 844 |
+
latent_z = l(latent_z)
|
| 845 |
+
|
| 846 |
+
latent_z = self.activation(latent_z)
|
| 847 |
+
fmap.append(latent_z)
|
| 848 |
+
|
| 849 |
+
latent_z = self.conv_post(latent_z)
|
| 850 |
+
|
| 851 |
+
return latent_z, fmap
|
| 852 |
+
|
| 853 |
+
|
| 854 |
+
|
| 855 |
+
class MultiScaleSubbandCQTDiscriminator(nn.Module): # replacing "MultiResSpecDiscriminator"
|
| 856 |
+
def __init__(self):
|
| 857 |
+
super(MultiScaleSubbandCQTDiscriminator, self).__init__()
|
| 858 |
+
cfg = Munch(multiscale_subband_cfg)
|
| 859 |
+
self.cfg = cfg
|
| 860 |
+
self.discriminators = nn.ModuleList(
|
| 861 |
+
[
|
| 862 |
+
DiscriminatorCQT(
|
| 863 |
+
cfg,
|
| 864 |
+
hop_length=cfg.hop_lengths[i],
|
| 865 |
+
n_octaves=cfg.n_octaves[i],
|
| 866 |
+
bins_per_octave=cfg.bins_per_octaves[i],
|
| 867 |
+
)
|
| 868 |
+
for i in range(len(cfg.hop_lengths))
|
| 869 |
+
]
|
| 870 |
+
)
|
| 871 |
+
|
| 872 |
+
def forward(self, y, y_hat):
|
| 873 |
+
y_d_rs = []
|
| 874 |
+
y_d_gs = []
|
| 875 |
+
fmap_rs = []
|
| 876 |
+
fmap_gs = []
|
| 877 |
+
|
| 878 |
+
for disc in self.discriminators:
|
| 879 |
+
y_d_r, fmap_r = disc(y)
|
| 880 |
+
y_d_g, fmap_g = disc(y_hat)
|
| 881 |
+
y_d_rs.append(y_d_r)
|
| 882 |
+
fmap_rs.append(fmap_r)
|
| 883 |
+
y_d_gs.append(y_d_g)
|
| 884 |
+
fmap_gs.append(fmap_g)
|
| 885 |
+
|
| 886 |
+
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
| 887 |
+
|
| 888 |
+
|
| 889 |
+
|
| 890 |
+
#############################
|
| 891 |
+
|
| 892 |
+
|
| 893 |
+
|
| 894 |
+
def feature_loss(fmap_r, fmap_g):
|
| 895 |
+
loss = 0
|
| 896 |
+
for dr, dg in zip(fmap_r, fmap_g):
|
| 897 |
+
for rl, gl in zip(dr, dg):
|
| 898 |
+
loss += torch.mean(torch.abs(rl - gl))
|
| 899 |
+
|
| 900 |
+
return loss*2
|
| 901 |
+
|
| 902 |
+
|
| 903 |
+
def discriminator_loss(disc_real_outputs, disc_generated_outputs):
|
| 904 |
+
loss = 0
|
| 905 |
+
r_losses = []
|
| 906 |
+
g_losses = []
|
| 907 |
+
for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
|
| 908 |
+
r_loss = torch.mean((1-dr)**2)
|
| 909 |
+
g_loss = torch.mean(dg**2)
|
| 910 |
+
loss += (r_loss + g_loss)
|
| 911 |
+
r_losses.append(r_loss.item())
|
| 912 |
+
g_losses.append(g_loss.item())
|
| 913 |
+
|
| 914 |
+
return loss, r_losses, g_losses
|
| 915 |
+
|
| 916 |
+
|
| 917 |
+
def generator_loss(disc_outputs):
|
| 918 |
+
loss = 0
|
| 919 |
+
gen_losses = []
|
| 920 |
+
for dg in disc_outputs:
|
| 921 |
+
l = torch.mean((1-dg)**2)
|
| 922 |
+
gen_losses.append(l)
|
| 923 |
+
loss += l
|
| 924 |
+
|
| 925 |
+
return loss, gen_losses
|
| 926 |
+
|
| 927 |
+
def discriminator_TPRLS_loss(disc_real_outputs, disc_generated_outputs):
|
| 928 |
+
loss = 0
|
| 929 |
+
for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
|
| 930 |
+
tau = 0.04
|
| 931 |
+
m_DG = torch.median((dr-dg))
|
| 932 |
+
L_rel = torch.mean((((dr - dg) - m_DG)**2)[dr < dg + m_DG])
|
| 933 |
+
loss += tau - F.relu(tau - L_rel)
|
| 934 |
+
return loss
|
| 935 |
+
|
| 936 |
+
def generator_TPRLS_loss(disc_real_outputs, disc_generated_outputs):
|
| 937 |
+
loss = 0
|
| 938 |
+
for dg, dr in zip(disc_real_outputs, disc_generated_outputs):
|
| 939 |
+
tau = 0.04
|
| 940 |
+
m_DG = torch.median((dr-dg))
|
| 941 |
+
L_rel = torch.mean((((dr - dg) - m_DG)**2)[dr < dg + m_DG])
|
| 942 |
+
loss += tau - F.relu(tau - L_rel)
|
| 943 |
+
return loss
|