Upload 2 files
Browse files- accelerate_train_second.py +1001 -0
- train_first.py +459 -0
accelerate_train_second.py
ADDED
|
@@ -0,0 +1,1001 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# load packages
|
| 2 |
+
import random
|
| 3 |
+
import yaml
|
| 4 |
+
import time
|
| 5 |
+
from munch import Munch
|
| 6 |
+
import numpy as np
|
| 7 |
+
import torch
|
| 8 |
+
from torch import nn
|
| 9 |
+
import torch.nn.functional as F
|
| 10 |
+
import torchaudio
|
| 11 |
+
import librosa
|
| 12 |
+
import click
|
| 13 |
+
import shutil
|
| 14 |
+
import traceback
|
| 15 |
+
import warnings
|
| 16 |
+
|
| 17 |
+
warnings.simplefilter('ignore')
|
| 18 |
+
from autoclip.torch import QuantileClip
|
| 19 |
+
from meldataset import build_dataloader
|
| 20 |
+
|
| 21 |
+
from Utils.ASR.models import ASRCNN
|
| 22 |
+
from Utils.JDC.model import JDCNet
|
| 23 |
+
from Utils.PLBERT.util import load_plbert
|
| 24 |
+
|
| 25 |
+
from models import *
|
| 26 |
+
from losses import *
|
| 27 |
+
from utils import *
|
| 28 |
+
|
| 29 |
+
from Modules.slmadv import SLMAdversarialLoss
|
| 30 |
+
from Modules.diffusion.sampler import DiffusionSampler, ADPM2Sampler, KarrasSchedule
|
| 31 |
+
|
| 32 |
+
from optimizers import build_optimizer
|
| 33 |
+
|
| 34 |
+
from accelerate import Accelerator, DistributedDataParallelKwargs
|
| 35 |
+
from accelerate.utils import tqdm, ProjectConfiguration
|
| 36 |
+
|
| 37 |
+
try:
|
| 38 |
+
import wandb
|
| 39 |
+
except ImportError:
|
| 40 |
+
wandb = None
|
| 41 |
+
|
| 42 |
+
# from Utils.fsdp_patch import replace_fsdp_state_dict_type
|
| 43 |
+
|
| 44 |
+
# replace_fsdp_state_dict_type()
|
| 45 |
+
|
| 46 |
+
import logging
|
| 47 |
+
|
| 48 |
+
from accelerate.logging import get_logger
|
| 49 |
+
from logging import StreamHandler
|
| 50 |
+
|
| 51 |
+
logger = get_logger(__name__)
|
| 52 |
+
logger.setLevel(logging.DEBUG)
|
| 53 |
+
# handler.setLevel(logging.DEBUG)
|
| 54 |
+
# logger.addHandler(handler)
|
| 55 |
+
|
| 56 |
+
@click.command()
|
| 57 |
+
@click.option('-p', '--config_path', default='Configs/config.yml', type=str)
|
| 58 |
+
def main(config_path):
|
| 59 |
+
config = yaml.safe_load(open(config_path))
|
| 60 |
+
|
| 61 |
+
log_dir = config['log_dir']
|
| 62 |
+
if not osp.exists(log_dir): os.makedirs(log_dir, exist_ok=True)
|
| 63 |
+
shutil.copy(config_path, osp.join(log_dir, osp.basename(config_path)))
|
| 64 |
+
|
| 65 |
+
# write logs
|
| 66 |
+
file_handler = logging.FileHandler(osp.join(log_dir, 'train.log'))
|
| 67 |
+
file_handler.setLevel(logging.DEBUG)
|
| 68 |
+
file_handler.setFormatter(logging.Formatter('%(levelname)s:%(asctime)s: %(message)s'))
|
| 69 |
+
logger.logger.addHandler(file_handler)
|
| 70 |
+
|
| 71 |
+
batch_size = config.get('batch_size', 10)
|
| 72 |
+
|
| 73 |
+
epochs = config.get('epochs_2nd', 200)
|
| 74 |
+
save_freq = config.get('save_freq', 2)
|
| 75 |
+
save_iter = 10000
|
| 76 |
+
log_interval = 10
|
| 77 |
+
saving_epoch = config.get('save_freq', 2)
|
| 78 |
+
|
| 79 |
+
data_params = config.get('data_params', None)
|
| 80 |
+
sr = config['preprocess_params'].get('sr', 24000)
|
| 81 |
+
hop = config['preprocess_params']["spect_params"].get('hop_length', 300)
|
| 82 |
+
win = config['preprocess_params']["spect_params"].get('win_length', 1200)
|
| 83 |
+
train_path = data_params['train_data']
|
| 84 |
+
val_path = data_params['val_data']
|
| 85 |
+
root_path = data_params['root_path']
|
| 86 |
+
min_length = data_params['min_length']
|
| 87 |
+
OOD_data = data_params['OOD_data']
|
| 88 |
+
|
| 89 |
+
max_len = config.get('max_len', 200)
|
| 90 |
+
|
| 91 |
+
loss_params = Munch(config['loss_params'])
|
| 92 |
+
diff_epoch = loss_params.diff_epoch
|
| 93 |
+
joint_epoch = loss_params.joint_epoch
|
| 94 |
+
|
| 95 |
+
optimizer_params = Munch(config['optimizer_params'])
|
| 96 |
+
|
| 97 |
+
train_list, val_list = get_data_path_list(train_path, val_path)
|
| 98 |
+
|
| 99 |
+
try:
|
| 100 |
+
tracker = 'tensorboard'
|
| 101 |
+
except KeyError:
|
| 102 |
+
tracker = "mlflow"
|
| 103 |
+
|
| 104 |
+
def log_audio(accelerator, audio, bib="", name="Validation", epoch=0, sr=24000, tracker="tensorboard"):
|
| 105 |
+
if tracker == "tensorboard":
|
| 106 |
+
ltracker = accelerator.get_tracker("tensorboard")
|
| 107 |
+
np_aud = np.stack([np.asarray(aud) for aud in audio])
|
| 108 |
+
ltracker.writer.add_audio(f"{name}-{bib}", np_aud, epoch, sample_rate=sr)
|
| 109 |
+
if tracker == "wandb":
|
| 110 |
+
try:
|
| 111 |
+
ltracker = accelerator.get_tracker("wandb")
|
| 112 |
+
ltracker.log(
|
| 113 |
+
{
|
| 114 |
+
"validation": [
|
| 115 |
+
wandb.Audio(audios, caption=f"{name}-{bib}", sample_rate=sr)
|
| 116 |
+
for i, audios in enumerate(audio)
|
| 117 |
+
]
|
| 118 |
+
}
|
| 119 |
+
, step=int(bib))
|
| 120 |
+
except IndexError:
|
| 121 |
+
pass
|
| 122 |
+
|
| 123 |
+
ddp_kwargs = DistributedDataParallelKwargs(find_unused_parameters=True, broadcast_buffers=False)
|
| 124 |
+
configAcc = ProjectConfiguration(project_dir=log_dir, logging_dir=log_dir)
|
| 125 |
+
accelerator = Accelerator(log_with=tracker,
|
| 126 |
+
project_config=configAcc,
|
| 127 |
+
split_batches=True,
|
| 128 |
+
kwargs_handlers=[ddp_kwargs],
|
| 129 |
+
mixed_precision='bf16')
|
| 130 |
+
|
| 131 |
+
accelerator.init_trackers(project_name="StyleTTS2-Second-Stage",
|
| 132 |
+
config=config if tracker == "wandb" else None)
|
| 133 |
+
HF = config["data_params"].get("HF", False)
|
| 134 |
+
name = config["data_params"].get("split", None)
|
| 135 |
+
split = config["data_params"].get("split", None)
|
| 136 |
+
val_split = config["data_params"].get("val_split", None)
|
| 137 |
+
ood_split = config["data_params"].get("OOD_split", None)
|
| 138 |
+
audcol = config["data_params"].get("audio_column", "speech")
|
| 139 |
+
phoncol = config["data_params"].get("phoneme_column", "phoneme")
|
| 140 |
+
specol = config["data_params"].get("speaker_column", "speaker ID")
|
| 141 |
+
|
| 142 |
+
if not HF:
|
| 143 |
+
train_list, val_list = get_data_path_list(train_path, val_path)
|
| 144 |
+
ds_conf = {"sr": sr, "hop": hop, "win": win}
|
| 145 |
+
vds_conf = {"sr": sr, "hop": hop, "win": win}
|
| 146 |
+
else:
|
| 147 |
+
train_list, val_list = train_path, val_path
|
| 148 |
+
ds_conf = {"sr": sr,
|
| 149 |
+
"hop": hop,
|
| 150 |
+
"split": split,
|
| 151 |
+
"OOD_split": ood_split,
|
| 152 |
+
"dataset_name": name,
|
| 153 |
+
"audio_column": audcol,
|
| 154 |
+
"phoneme_column": phoncol,
|
| 155 |
+
"speaker_id_column": specol,
|
| 156 |
+
"win": win}
|
| 157 |
+
vds_conf = {"sr": sr,
|
| 158 |
+
"hop": hop,
|
| 159 |
+
"split": val_split,
|
| 160 |
+
"OOD_split": ood_split,
|
| 161 |
+
"dataset_name": name,
|
| 162 |
+
"audio_column": audcol,
|
| 163 |
+
"phoneme_column": phoncol,
|
| 164 |
+
"speaker_id_column": specol,
|
| 165 |
+
"win": win}
|
| 166 |
+
device = accelerator.device
|
| 167 |
+
|
| 168 |
+
with accelerator.main_process_first():
|
| 169 |
+
train_dataloader = build_dataloader(train_list,
|
| 170 |
+
root_path,
|
| 171 |
+
OOD_data=OOD_data,
|
| 172 |
+
min_length=min_length,
|
| 173 |
+
batch_size=batch_size,
|
| 174 |
+
num_workers=2,
|
| 175 |
+
dataset_config={},
|
| 176 |
+
device=device)
|
| 177 |
+
|
| 178 |
+
val_dataloader = build_dataloader(val_list,
|
| 179 |
+
root_path,
|
| 180 |
+
OOD_data=OOD_data,
|
| 181 |
+
min_length=min_length,
|
| 182 |
+
batch_size=batch_size,
|
| 183 |
+
validation=True,
|
| 184 |
+
num_workers=0,
|
| 185 |
+
device=device,
|
| 186 |
+
dataset_config={})
|
| 187 |
+
|
| 188 |
+
# load pretrained ASR model
|
| 189 |
+
ASR_config = config.get('ASR_config', False)
|
| 190 |
+
ASR_path = config.get('ASR_path', False)
|
| 191 |
+
text_aligner = load_ASR_models(ASR_path, ASR_config)
|
| 192 |
+
|
| 193 |
+
# load pretrained F0 model
|
| 194 |
+
F0_path = config.get('F0_path', False)
|
| 195 |
+
pitch_extractor = load_F0_models(F0_path)
|
| 196 |
+
|
| 197 |
+
# load PL-BERT model
|
| 198 |
+
BERT_path = config.get('PLBERT_dir', False)
|
| 199 |
+
plbert = load_plbert(BERT_path)
|
| 200 |
+
|
| 201 |
+
# build model
|
| 202 |
+
config['model_params']["sr"] = sr
|
| 203 |
+
|
| 204 |
+
model_params = recursive_munch(config['model_params'])
|
| 205 |
+
multispeaker = model_params.multispeaker
|
| 206 |
+
model = build_model(model_params, text_aligner, pitch_extractor, plbert)
|
| 207 |
+
_ = [model[key].to(device) for key in model]
|
| 208 |
+
|
| 209 |
+
# # # DP
|
| 210 |
+
# for key in model:
|
| 211 |
+
# if key != "mpd" and key != "msd" and key != "wd":
|
| 212 |
+
# model[key] = accelerator.prepare(model[key])
|
| 213 |
+
|
| 214 |
+
|
| 215 |
+
# for k in model:
|
| 216 |
+
# model[k] = nn.SyncBatchNorm.convert_sync_batchnorm(model[k])
|
| 217 |
+
|
| 218 |
+
for k in model:
|
| 219 |
+
model[k] = accelerator.prepare(model[k])
|
| 220 |
+
|
| 221 |
+
start_epoch = 0
|
| 222 |
+
iters = 0
|
| 223 |
+
|
| 224 |
+
load_pretrained = config.get('pretrained_model', '') != '' and config.get('second_stage_load_pretrained', False)
|
| 225 |
+
|
| 226 |
+
if not load_pretrained:
|
| 227 |
+
if config.get('first_stage_path', '') != '':
|
| 228 |
+
first_stage_path = osp.join(log_dir, config.get('first_stage_path', 'first_stage.pth'))
|
| 229 |
+
accelerator.print('Loading the first stage model at %s ...' % first_stage_path)
|
| 230 |
+
model, _, start_epoch, iters = load_checkpoint(model,
|
| 231 |
+
None,
|
| 232 |
+
first_stage_path,
|
| 233 |
+
load_only_params=True,
|
| 234 |
+
ignore_modules=['bert', 'bert_encoder', 'predictor',
|
| 235 |
+
'predictor_encoder', 'msd', 'mpd', 'wd',
|
| 236 |
+
'diffusion']) # keep starting epoch for tensorboard log
|
| 237 |
+
|
| 238 |
+
# these epochs should be counted from the start epoch
|
| 239 |
+
diff_epoch += start_epoch
|
| 240 |
+
joint_epoch += start_epoch
|
| 241 |
+
epochs += start_epoch
|
| 242 |
+
model.style_encoder.train()
|
| 243 |
+
model.predictor_encoder = copy.deepcopy(model.style_encoder)
|
| 244 |
+
else:
|
| 245 |
+
raise ValueError('You need to specify the path to the first stage model.')
|
| 246 |
+
|
| 247 |
+
gl = GeneratorLoss(model.mpd, model.msd).to(device)
|
| 248 |
+
dl = DiscriminatorLoss(model.mpd, model.msd).to(device)
|
| 249 |
+
wl = WavLMLoss(model_params.slm.model,
|
| 250 |
+
model.wd,
|
| 251 |
+
sr,
|
| 252 |
+
model_params.slm.sr).to(device)
|
| 253 |
+
|
| 254 |
+
gl = accelerator.prepare(gl)
|
| 255 |
+
dl = accelerator.prepare(dl)
|
| 256 |
+
wl = accelerator.prepare(wl)
|
| 257 |
+
wl = wl.eval()
|
| 258 |
+
|
| 259 |
+
sampler = DiffusionSampler(
|
| 260 |
+
model.diffusion.module.diffusion,
|
| 261 |
+
sampler=ADPM2Sampler(),
|
| 262 |
+
sigma_schedule=KarrasSchedule(sigma_min=0.0001, sigma_max=3.0, rho=9.0), # empirical parameters
|
| 263 |
+
clamp=False
|
| 264 |
+
)
|
| 265 |
+
|
| 266 |
+
scheduler_params = {
|
| 267 |
+
"max_lr": optimizer_params.lr * accelerator.num_processes,
|
| 268 |
+
"pct_start": float(0),
|
| 269 |
+
"epochs": epochs,
|
| 270 |
+
"steps_per_epoch": len(train_dataloader),
|
| 271 |
+
}
|
| 272 |
+
scheduler_params_dict = {key: scheduler_params.copy() for key in model}
|
| 273 |
+
scheduler_params_dict['bert']['max_lr'] = optimizer_params.bert_lr * 2
|
| 274 |
+
scheduler_params_dict['decoder']['max_lr'] = optimizer_params.ft_lr * 2
|
| 275 |
+
scheduler_params_dict['style_encoder']['max_lr'] = optimizer_params.ft_lr * 2
|
| 276 |
+
|
| 277 |
+
optimizer = build_optimizer({key: model[key].parameters() for key in model},
|
| 278 |
+
scheduler_params_dict=scheduler_params_dict,
|
| 279 |
+
lr=optimizer_params.lr * accelerator.num_processes)
|
| 280 |
+
|
| 281 |
+
# adjust BERT learning rate
|
| 282 |
+
for g in optimizer.optimizers['bert'].param_groups:
|
| 283 |
+
g['betas'] = (0.9, 0.99)
|
| 284 |
+
g['lr'] = optimizer_params.bert_lr
|
| 285 |
+
g['initial_lr'] = optimizer_params.bert_lr
|
| 286 |
+
g['min_lr'] = 0
|
| 287 |
+
g['weight_decay'] = 0.01
|
| 288 |
+
|
| 289 |
+
# adjust acoustic module learning rate
|
| 290 |
+
for module in ["decoder", "style_encoder"]:
|
| 291 |
+
for g in optimizer.optimizers[module].param_groups:
|
| 292 |
+
g['betas'] = (0.0, 0.99)
|
| 293 |
+
g['lr'] = optimizer_params.ft_lr
|
| 294 |
+
g['initial_lr'] = optimizer_params.ft_lr
|
| 295 |
+
g['min_lr'] = 0
|
| 296 |
+
g['weight_decay'] = 1e-4
|
| 297 |
+
|
| 298 |
+
# load models if there is a model
|
| 299 |
+
if load_pretrained:
|
| 300 |
+
model, optimizer, start_epoch, iters = load_checkpoint(model, optimizer, config['pretrained_model'],
|
| 301 |
+
load_only_params=config.get('load_only_params', True))
|
| 302 |
+
|
| 303 |
+
n_down = model.text_aligner.module.n_down
|
| 304 |
+
|
| 305 |
+
# for k in model:
|
| 306 |
+
# model[k] = accelerator.prepare(model[k])
|
| 307 |
+
|
| 308 |
+
best_loss = float('inf') # best test loss
|
| 309 |
+
iters = 0
|
| 310 |
+
|
| 311 |
+
criterion = nn.L1Loss() # F0 loss (regression)
|
| 312 |
+
torch.cuda.empty_cache()
|
| 313 |
+
|
| 314 |
+
stft_loss = MultiResolutionSTFTLoss().to(device)
|
| 315 |
+
|
| 316 |
+
accelerator.print('BERT', optimizer.optimizers['bert'])
|
| 317 |
+
accelerator.print('decoder', optimizer.optimizers['decoder'])
|
| 318 |
+
|
| 319 |
+
start_ds = False
|
| 320 |
+
|
| 321 |
+
running_std = []
|
| 322 |
+
|
| 323 |
+
slmadv_params = Munch(config['slmadv_params'])
|
| 324 |
+
|
| 325 |
+
slmadv = SLMAdversarialLoss(model, wl, sampler,
|
| 326 |
+
slmadv_params.min_len,
|
| 327 |
+
slmadv_params.max_len,
|
| 328 |
+
batch_percentage=slmadv_params.batch_percentage,
|
| 329 |
+
skip_update=slmadv_params.iter,
|
| 330 |
+
sig=slmadv_params.sig
|
| 331 |
+
)
|
| 332 |
+
|
| 333 |
+
for k, v in optimizer.optimizers.items():
|
| 334 |
+
optimizer.optimizers[k] = accelerator.prepare(optimizer.optimizers[k])
|
| 335 |
+
optimizer.schedulers[k] = accelerator.prepare(optimizer.schedulers[k])
|
| 336 |
+
|
| 337 |
+
train_dataloader = accelerator.prepare(train_dataloader)
|
| 338 |
+
|
| 339 |
+
for epoch in range(start_epoch, epochs):
|
| 340 |
+
running_loss = 0
|
| 341 |
+
start_time = time.time()
|
| 342 |
+
|
| 343 |
+
_ = [model[key].eval() for key in model]
|
| 344 |
+
|
| 345 |
+
model.text_aligner.train()
|
| 346 |
+
model.text_encoder.train()
|
| 347 |
+
|
| 348 |
+
model.predictor.train()
|
| 349 |
+
model.predictor_encoder.train()
|
| 350 |
+
model.bert_encoder.train()
|
| 351 |
+
model.bert.train()
|
| 352 |
+
model.msd.train()
|
| 353 |
+
model.mpd.train()
|
| 354 |
+
model.wd.train()
|
| 355 |
+
|
| 356 |
+
if epoch >= diff_epoch:
|
| 357 |
+
start_ds = True
|
| 358 |
+
|
| 359 |
+
for i, batch in enumerate(train_dataloader):
|
| 360 |
+
waves = batch[0]
|
| 361 |
+
batch = [b.to(device) for b in batch[1:]]
|
| 362 |
+
texts, input_lengths, ref_texts, ref_lengths, mels, mel_input_length, ref_mels = batch
|
| 363 |
+
|
| 364 |
+
with torch.no_grad():
|
| 365 |
+
mask = length_to_mask(mel_input_length // (2 ** n_down)).to(device)
|
| 366 |
+
mel_mask = length_to_mask(mel_input_length).to(device)
|
| 367 |
+
text_mask = length_to_mask(input_lengths).to(texts.device)
|
| 368 |
+
|
| 369 |
+
try:
|
| 370 |
+
_, _, s2s_attn = model.text_aligner(mels, mask, texts)
|
| 371 |
+
s2s_attn = s2s_attn.transpose(-1, -2)
|
| 372 |
+
s2s_attn = s2s_attn[..., 1:]
|
| 373 |
+
s2s_attn = s2s_attn.transpose(-1, -2)
|
| 374 |
+
except:
|
| 375 |
+
continue
|
| 376 |
+
|
| 377 |
+
mask_ST = mask_from_lens(s2s_attn, input_lengths, mel_input_length // (2 ** n_down))
|
| 378 |
+
s2s_attn_mono = maximum_path(s2s_attn, mask_ST)
|
| 379 |
+
|
| 380 |
+
# encode
|
| 381 |
+
t_en = model.text_encoder(texts, input_lengths, text_mask)
|
| 382 |
+
asr = (t_en @ s2s_attn_mono)
|
| 383 |
+
|
| 384 |
+
d_gt = s2s_attn_mono.sum(axis=-1).detach()
|
| 385 |
+
|
| 386 |
+
# compute reference styles
|
| 387 |
+
if multispeaker and epoch >= diff_epoch:
|
| 388 |
+
ref_ss = model.style_encoder(ref_mels.unsqueeze(1))
|
| 389 |
+
ref_sp = model.predictor_encoder(ref_mels.unsqueeze(1))
|
| 390 |
+
ref = torch.cat([ref_ss, ref_sp], dim=1)
|
| 391 |
+
|
| 392 |
+
# compute the style of the entire utterance
|
| 393 |
+
# this operation cannot be done in batch because of the avgpool layer (may need to work on masked avgpool)
|
| 394 |
+
ss = []
|
| 395 |
+
gs = []
|
| 396 |
+
for bib in range(len(mel_input_length)):
|
| 397 |
+
mel_length = int(mel_input_length[bib].item())
|
| 398 |
+
mel = mels[bib, :, :mel_input_length[bib]]
|
| 399 |
+
s = model.predictor_encoder(mel.unsqueeze(0).unsqueeze(1))
|
| 400 |
+
ss.append(s)
|
| 401 |
+
s = model.style_encoder(mel.unsqueeze(0).unsqueeze(1))
|
| 402 |
+
gs.append(s)
|
| 403 |
+
|
| 404 |
+
s_dur = torch.stack(ss).squeeze(1) # global prosodic styles
|
| 405 |
+
gs = torch.stack(gs).squeeze(1) # global acoustic styles
|
| 406 |
+
s_trg = torch.cat([gs, s_dur], dim=-1).detach() # ground truth for denoiser
|
| 407 |
+
|
| 408 |
+
bert_dur = model.bert(texts, attention_mask=(~text_mask).int())
|
| 409 |
+
d_en = model.bert_encoder(bert_dur).transpose(-1, -2)
|
| 410 |
+
|
| 411 |
+
# denoiser training
|
| 412 |
+
if epoch >= diff_epoch:
|
| 413 |
+
num_steps = np.random.randint(3, 5)
|
| 414 |
+
|
| 415 |
+
if model_params.diffusion.dist.estimate_sigma_data:
|
| 416 |
+
model.diffusion.module.diffusion.sigma_data = s_trg.std(
|
| 417 |
+
axis=-1).mean().item() # batch-wise std estimation
|
| 418 |
+
running_std.append(model.diffusion.module.diffusion.sigma_data)
|
| 419 |
+
|
| 420 |
+
if multispeaker:
|
| 421 |
+
s_preds = sampler(noise=torch.randn_like(s_trg).unsqueeze(1).to(device),
|
| 422 |
+
embedding=bert_dur,
|
| 423 |
+
embedding_scale=1,
|
| 424 |
+
features=ref, # reference from the same speaker as the embedding
|
| 425 |
+
embedding_mask_proba=0.1,
|
| 426 |
+
num_steps=num_steps).squeeze(1)
|
| 427 |
+
loss_diff = model.diffusion(s_trg.unsqueeze(1), embedding=bert_dur, features=ref).mean() # EDM loss
|
| 428 |
+
loss_sty = F.l1_loss(s_preds, s_trg.detach()) # style reconstruction loss
|
| 429 |
+
else:
|
| 430 |
+
s_preds = sampler(noise=torch.randn_like(s_trg).unsqueeze(1).to(device),
|
| 431 |
+
embedding=bert_dur,
|
| 432 |
+
embedding_scale=1,
|
| 433 |
+
embedding_mask_proba=0.1,
|
| 434 |
+
num_steps=num_steps).squeeze(1)
|
| 435 |
+
loss_diff = model.diffusion.module.diffusion(s_trg.unsqueeze(1),
|
| 436 |
+
embedding=bert_dur).mean() # EDM loss
|
| 437 |
+
loss_sty = F.l1_loss(s_preds, s_trg.detach()) # style reconstruction loss
|
| 438 |
+
# print(loss_sty)
|
| 439 |
+
else:
|
| 440 |
+
# print("here")
|
| 441 |
+
loss_sty = 0
|
| 442 |
+
loss_diff = 0
|
| 443 |
+
|
| 444 |
+
d, p = model.predictor(d_en, s_dur,
|
| 445 |
+
input_lengths,
|
| 446 |
+
s2s_attn_mono,
|
| 447 |
+
text_mask)
|
| 448 |
+
|
| 449 |
+
# mel_len = int(mel_input_length.min().item() / 2 - 1)
|
| 450 |
+
|
| 451 |
+
mel_input_length_all = accelerator.gather(mel_input_length) # for balanced load
|
| 452 |
+
mel_len = min([int(mel_input_length_all.min().item() / 2 - 1), max_len // 2])
|
| 453 |
+
|
| 454 |
+
mel_len_st = int(mel_input_length.min().item() / 2 - 1)
|
| 455 |
+
en = []
|
| 456 |
+
gt = []
|
| 457 |
+
st = []
|
| 458 |
+
p_en = []
|
| 459 |
+
wav = []
|
| 460 |
+
|
| 461 |
+
for bib in range(len(mel_input_length)):
|
| 462 |
+
mel_length = int(mel_input_length[bib].item() / 2)
|
| 463 |
+
|
| 464 |
+
random_start = np.random.randint(0, mel_length - mel_len)
|
| 465 |
+
en.append(asr[bib, :, random_start:random_start + mel_len])
|
| 466 |
+
p_en.append(p[bib, :, random_start:random_start + mel_len])
|
| 467 |
+
gt.append(mels[bib, :, (random_start * 2):((random_start + mel_len) * 2)])
|
| 468 |
+
|
| 469 |
+
y = waves[bib][(random_start * 2) * 300:((random_start + mel_len) * 2) * 300]
|
| 470 |
+
wav.append(torch.from_numpy(y).to(device))
|
| 471 |
+
|
| 472 |
+
# style reference (better to be different from the GT)
|
| 473 |
+
random_start = np.random.randint(0, mel_length - mel_len_st)
|
| 474 |
+
st.append(mels[bib, :, (random_start * 2):((random_start + mel_len_st) * 2)])
|
| 475 |
+
|
| 476 |
+
wav = torch.stack(wav).float().detach()
|
| 477 |
+
|
| 478 |
+
en = torch.stack(en)
|
| 479 |
+
p_en = torch.stack(p_en)
|
| 480 |
+
gt = torch.stack(gt).detach()
|
| 481 |
+
st = torch.stack(st).detach()
|
| 482 |
+
|
| 483 |
+
if gt.size(-1) < 80:
|
| 484 |
+
continue
|
| 485 |
+
|
| 486 |
+
s_dur = model.predictor_encoder(st.unsqueeze(1) if multispeaker else gt.unsqueeze(1))
|
| 487 |
+
s = model.style_encoder(st.unsqueeze(1) if multispeaker else gt.unsqueeze(1))
|
| 488 |
+
|
| 489 |
+
with torch.no_grad():
|
| 490 |
+
F0_real, _, F0 = model.pitch_extractor(gt.unsqueeze(1))
|
| 491 |
+
F0 = F0.reshape(F0.shape[0], F0.shape[1] * 2, F0.shape[2])
|
| 492 |
+
|
| 493 |
+
asr_real = model.text_aligner.module.get_feature(gt)
|
| 494 |
+
|
| 495 |
+
N_real = log_norm(gt.unsqueeze(1)).squeeze(1)
|
| 496 |
+
|
| 497 |
+
y_rec_gt = wav.unsqueeze(1)
|
| 498 |
+
y_rec_gt_pred = model.decoder(en, F0_real, N_real, s)
|
| 499 |
+
|
| 500 |
+
if epoch >= joint_epoch:
|
| 501 |
+
# ground truth from recording
|
| 502 |
+
wav = y_rec_gt # use recording since decoder is tuned
|
| 503 |
+
else:
|
| 504 |
+
# ground truth from reconstruction
|
| 505 |
+
wav = y_rec_gt_pred # use reconstruction since decoder is fixed
|
| 506 |
+
|
| 507 |
+
F0_fake, N_fake = model.predictor(texts=p_en, style=s_dur, f0=True)
|
| 508 |
+
|
| 509 |
+
y_rec = model.decoder(en, F0_fake, N_fake, s)
|
| 510 |
+
|
| 511 |
+
loss_F0_rec = (F.smooth_l1_loss(F0_real, F0_fake)) / 10
|
| 512 |
+
loss_norm_rec = F.smooth_l1_loss(N_real, N_fake)
|
| 513 |
+
|
| 514 |
+
if start_ds:
|
| 515 |
+
optimizer.zero_grad()
|
| 516 |
+
d_loss = dl(wav.detach(), y_rec.detach()).mean()
|
| 517 |
+
accelerator.backward(d_loss)
|
| 518 |
+
optimizer.step('msd')
|
| 519 |
+
optimizer.step('mpd')
|
| 520 |
+
else:
|
| 521 |
+
d_loss = 0
|
| 522 |
+
|
| 523 |
+
# generator loss
|
| 524 |
+
optimizer.zero_grad()
|
| 525 |
+
|
| 526 |
+
loss_mel = stft_loss(y_rec, wav)
|
| 527 |
+
if start_ds:
|
| 528 |
+
loss_gen_all = gl(wav, y_rec).mean()
|
| 529 |
+
else:
|
| 530 |
+
loss_gen_all = 0
|
| 531 |
+
loss_lm = wl(wav.detach().squeeze(1), y_rec.squeeze(1)).mean()
|
| 532 |
+
|
| 533 |
+
loss_ce = 0
|
| 534 |
+
loss_dur = 0
|
| 535 |
+
for _s2s_pred, _text_input, _text_length in zip(d, (d_gt), input_lengths):
|
| 536 |
+
_s2s_pred = _s2s_pred[:_text_length, :]
|
| 537 |
+
_text_input = _text_input[:_text_length].long()
|
| 538 |
+
_s2s_trg = torch.zeros_like(_s2s_pred)
|
| 539 |
+
for p in range(_s2s_trg.shape[0]):
|
| 540 |
+
_s2s_trg[p, :_text_input[p]] = 1
|
| 541 |
+
_dur_pred = torch.sigmoid(_s2s_pred).sum(axis=1)
|
| 542 |
+
|
| 543 |
+
loss_dur += F.l1_loss(_dur_pred[1:_text_length - 1],
|
| 544 |
+
_text_input[1:_text_length - 1])
|
| 545 |
+
loss_ce += F.binary_cross_entropy_with_logits(_s2s_pred.flatten(), _s2s_trg.flatten())
|
| 546 |
+
|
| 547 |
+
loss_ce /= texts.size(0)
|
| 548 |
+
loss_dur /= texts.size(0)
|
| 549 |
+
|
| 550 |
+
g_loss = loss_params.lambda_mel * loss_mel + \
|
| 551 |
+
loss_params.lambda_F0 * loss_F0_rec + \
|
| 552 |
+
loss_params.lambda_ce * loss_ce + \
|
| 553 |
+
loss_params.lambda_norm * loss_norm_rec + \
|
| 554 |
+
loss_params.lambda_dur * loss_dur + \
|
| 555 |
+
loss_params.lambda_gen * loss_gen_all + \
|
| 556 |
+
loss_params.lambda_slm * loss_lm + \
|
| 557 |
+
loss_params.lambda_sty * loss_sty + \
|
| 558 |
+
loss_params.lambda_diff * loss_diff
|
| 559 |
+
|
| 560 |
+
running_loss += accelerator.gather(loss_mel).mean().item()
|
| 561 |
+
accelerator.backward(g_loss)
|
| 562 |
+
|
| 563 |
+
|
| 564 |
+
|
| 565 |
+
# clipper_bert_enc = QuantileClip(model.bert_encoder.parameters(), quantile=0.9, history_length=1000) # Adaptive clipping of gradient
|
| 566 |
+
# clipper_bert = QuantileClip(model.bert.parameters(), quantile=0.9, history_length=1000)
|
| 567 |
+
# clipper_pred = QuantileClip(model.predictor.parameters(), quantile=0.9, history_length=1000)
|
| 568 |
+
# clipper_pred_enc = QuantileClip(model.predictor_encoder.parameters(), quantile=0.9, history_length=1000)
|
| 569 |
+
|
| 570 |
+
# accelerator.clip_grad_norm_(model.bert_encoder.parameters(), max_norm=2.0)
|
| 571 |
+
# accelerator.clip_grad_norm_(model.bert.parameters(), max_norm=2.0)
|
| 572 |
+
# accelerator.clip_grad_norm_(model.predictor.parameters(), max_norm=2.0)
|
| 573 |
+
# accelerator.clip_grad_norm_(model.predictor_encoder.parameters(), max_norm=2.0)
|
| 574 |
+
|
| 575 |
+
# if iters % 10 == 0: # Monitor every 10 steps
|
| 576 |
+
# components = ['bert_encoder', 'bert', 'predictor', 'predictor_encoder']
|
| 577 |
+
# if epoch >= diff_epoch:
|
| 578 |
+
# components.append('diffusion')
|
| 579 |
+
|
| 580 |
+
# for key in components:
|
| 581 |
+
# if key in model:
|
| 582 |
+
# grad_norm = accelerator.clip_grad_norm_(model[key].parameters(), float('inf'))
|
| 583 |
+
# accelerator.print(f"key: {key} grad norm: {grad_norm:.4f}")
|
| 584 |
+
|
| 585 |
+
|
| 586 |
+
# if torch.isnan(g_loss):
|
| 587 |
+
# from IPython.core.debugger import set_trace
|
| 588 |
+
# set_trace()
|
| 589 |
+
|
| 590 |
+
|
| 591 |
+
|
| 592 |
+
# clipper_bert_enc.step()
|
| 593 |
+
# clipper_bert.step()
|
| 594 |
+
# clipper_pred.step()
|
| 595 |
+
# clipper_pred_enc.step()
|
| 596 |
+
|
| 597 |
+
optimizer.step('bert_encoder')
|
| 598 |
+
optimizer.step('bert')
|
| 599 |
+
optimizer.step('predictor')
|
| 600 |
+
optimizer.step('predictor_encoder')
|
| 601 |
+
|
| 602 |
+
if epoch >= diff_epoch:
|
| 603 |
+
# accelerator.clip_grad_norm_(model.diffusion.parameters(), max_norm=1.0)
|
| 604 |
+
optimizer.step('diffusion')
|
| 605 |
+
|
| 606 |
+
if epoch >= joint_epoch:
|
| 607 |
+
|
| 608 |
+
optimizer.step('style_encoder')
|
| 609 |
+
optimizer.step('decoder')
|
| 610 |
+
|
| 611 |
+
d_loss_slm, loss_gen_lm = 0, 0
|
| 612 |
+
|
| 613 |
+
# # randomly pick whether to use in-distribution text
|
| 614 |
+
# if np.random.rand() < 0.5:
|
| 615 |
+
# use_ind = True
|
| 616 |
+
# else:
|
| 617 |
+
# use_ind = False
|
| 618 |
+
|
| 619 |
+
# if use_ind:
|
| 620 |
+
# ref_lengths = input_lengths
|
| 621 |
+
# ref_texts = texts
|
| 622 |
+
|
| 623 |
+
# slm_out = slmadv(i,
|
| 624 |
+
# y_rec_gt,
|
| 625 |
+
# y_rec_gt_pred,
|
| 626 |
+
# waves,
|
| 627 |
+
# mel_input_length,
|
| 628 |
+
# ref_texts,
|
| 629 |
+
# ref_lengths, use_ind, s_trg.detach(), ref if multispeaker else None)
|
| 630 |
+
|
| 631 |
+
|
| 632 |
+
|
| 633 |
+
# if slm_out is None:
|
| 634 |
+
# continue
|
| 635 |
+
# # if slm_out is not None:
|
| 636 |
+
# # d_loss_slm, loss_gen_lm, y_pred = slm_out
|
| 637 |
+
# # optimizer.zero_grad()
|
| 638 |
+
# # # accelerator.clip_grad_norm_(model.decoder.parameters(), 1)
|
| 639 |
+
# # # print("here")
|
| 640 |
+
# # accelerator.backward(loss_gen_lm)
|
| 641 |
+
# # # print("here2")
|
| 642 |
+
# # # SLM discriminator loss
|
| 643 |
+
|
| 644 |
+
|
| 645 |
+
# # # compute the gradient norm
|
| 646 |
+
|
| 647 |
+
|
| 648 |
+
# # total_norm = {}
|
| 649 |
+
# # for key in model.keys():
|
| 650 |
+
# # total_norm[key] = 0
|
| 651 |
+
# # parameters = [p for p in model[key].parameters() if p.grad is not None and p.requires_grad]
|
| 652 |
+
# # for p in parameters:
|
| 653 |
+
# # param_norm = p.grad.detach().data.norm(2)
|
| 654 |
+
# # total_norm[key] += param_norm.item() ** 2
|
| 655 |
+
# # total_norm[key] = total_norm[key] ** 0.5
|
| 656 |
+
|
| 657 |
+
# # # gradient scaling
|
| 658 |
+
# # if total_norm['predictor'] > slmadv_params.thresh:
|
| 659 |
+
# # for key in model.keys():
|
| 660 |
+
# # for p in model[key].parameters():
|
| 661 |
+
# # if p.grad is not None:
|
| 662 |
+
# # p.grad *= (1 / total_norm['predictor'])
|
| 663 |
+
|
| 664 |
+
# # for p in model.predictor.module.duration_proj.parameters():
|
| 665 |
+
# # if p.grad is not None:
|
| 666 |
+
# # p.grad *= slmadv_params.scale
|
| 667 |
+
|
| 668 |
+
# # for p in model.predictor.module.lstm.parameters():
|
| 669 |
+
# # if p.grad is not None:
|
| 670 |
+
# # p.grad *= slmadv_params.scale
|
| 671 |
+
|
| 672 |
+
# # for p in model.diffusion.module.parameters():
|
| 673 |
+
# # if p.grad is not None:
|
| 674 |
+
# # p.grad *= slmadv_params.scale
|
| 675 |
+
|
| 676 |
+
# # optimizer.step('bert_encoder')
|
| 677 |
+
# # optimizer.step('bert')
|
| 678 |
+
# # optimizer.step('predictor')
|
| 679 |
+
# # optimizer.step('diffusion')
|
| 680 |
+
|
| 681 |
+
# # # SLM discriminator loss
|
| 682 |
+
# # if d_loss_slm != 0:
|
| 683 |
+
# # optimizer.zero_grad()
|
| 684 |
+
# # # print("hey1")
|
| 685 |
+
# # accelerator.backward(d_loss_slm, retain_graph=True)
|
| 686 |
+
# # optimizer.step('wd')
|
| 687 |
+
# # # print("hey2")
|
| 688 |
+
|
| 689 |
+
else:
|
| 690 |
+
d_loss_slm, loss_gen_lm = 0, 0
|
| 691 |
+
|
| 692 |
+
iters = iters + 1
|
| 693 |
+
if (i + 1) % log_interval == 0:
|
| 694 |
+
logger.info(
|
| 695 |
+
'Epoch [%d/%d], Step [%d/%d], Loss: %.5f, Disc Loss: %.5f, Dur Loss: %.5f, CE Loss: %.5f, Norm Loss: %.5f, F0 Loss: %.5f, LM Loss: %.5f, Gen Loss: %.5f, Sty Loss: %.5f, Diff Loss: %.5f, DiscLM Loss: %.5f, GenLM Loss: %.5f'
|
| 696 |
+
% (epoch + 1, epochs, i + 1, len(train_list) // batch_size, running_loss / log_interval, d_loss,
|
| 697 |
+
loss_dur, loss_ce, loss_norm_rec, loss_F0_rec, loss_lm, loss_gen_all, loss_sty, loss_diff,
|
| 698 |
+
d_loss_slm, loss_gen_lm), main_process_only=True)
|
| 699 |
+
if accelerator.is_main_process:
|
| 700 |
+
print('Epoch [%d/%d], Step [%d/%d], Loss: %.5f, Disc Loss: %.5f, Dur Loss: %.5f, CE Loss: %.5f, Norm Loss: %.5f, F0 Loss: %.5f, LM Loss: %.5f, Gen Loss: %.5f, Sty Loss: %.5f, Diff Loss: %.5f, DiscLM Loss: %.5f, GenLM Loss: %.5f'
|
| 701 |
+
% (epoch + 1, epochs, i + 1, len(train_list) // batch_size, running_loss / log_interval, d_loss,
|
| 702 |
+
loss_dur, loss_ce, loss_norm_rec, loss_F0_rec, loss_lm, loss_gen_all, loss_sty, loss_diff,
|
| 703 |
+
d_loss_slm, loss_gen_lm))
|
| 704 |
+
accelerator.log({'train/mel_loss': float(running_loss / log_interval),
|
| 705 |
+
'train/gen_loss': float(loss_gen_all),
|
| 706 |
+
'train/d_loss': float(d_loss),
|
| 707 |
+
'train/ce_loss': float(loss_ce),
|
| 708 |
+
'train/dur_loss': float(loss_dur),
|
| 709 |
+
'train/slm_loss': float(loss_lm),
|
| 710 |
+
'train/norm_loss': float(loss_norm_rec),
|
| 711 |
+
'train/F0_loss': float(loss_F0_rec),
|
| 712 |
+
'train/sty_loss': float(loss_sty),
|
| 713 |
+
'train/diff_loss': float(loss_diff),
|
| 714 |
+
'train/d_loss_slm': float(d_loss_slm),
|
| 715 |
+
'train/gen_loss_slm': float(loss_gen_lm),
|
| 716 |
+
'epoch': int(epoch) + 1}, step=iters)
|
| 717 |
+
|
| 718 |
+
running_loss = 0
|
| 719 |
+
|
| 720 |
+
accelerator.print('Time elasped:', time.time() - start_time)
|
| 721 |
+
|
| 722 |
+
loss_test = 0
|
| 723 |
+
loss_align = 0
|
| 724 |
+
loss_f = 0
|
| 725 |
+
|
| 726 |
+
_ = [model[key].eval() for key in model]
|
| 727 |
+
|
| 728 |
+
with torch.no_grad():
|
| 729 |
+
iters_test = 0
|
| 730 |
+
for batch_idx, batch in enumerate(val_dataloader):
|
| 731 |
+
optimizer.zero_grad()
|
| 732 |
+
|
| 733 |
+
try:
|
| 734 |
+
waves = batch[0]
|
| 735 |
+
batch = [b.to(device) for b in batch[1:]]
|
| 736 |
+
texts, input_lengths, ref_texts, ref_lengths, mels, mel_input_length, ref_mels = batch
|
| 737 |
+
with torch.no_grad():
|
| 738 |
+
mask = length_to_mask(mel_input_length // (2 ** n_down)).to(device)
|
| 739 |
+
text_mask = length_to_mask(input_lengths).to(texts.device)
|
| 740 |
+
|
| 741 |
+
_, _, s2s_attn = model.text_aligner(mels, mask, texts)
|
| 742 |
+
s2s_attn = s2s_attn.transpose(-1, -2)
|
| 743 |
+
s2s_attn = s2s_attn[..., 1:]
|
| 744 |
+
s2s_attn = s2s_attn.transpose(-1, -2)
|
| 745 |
+
|
| 746 |
+
mask_ST = mask_from_lens(s2s_attn, input_lengths, mel_input_length // (2 ** n_down))
|
| 747 |
+
s2s_attn_mono = maximum_path(s2s_attn, mask_ST)
|
| 748 |
+
|
| 749 |
+
# encode
|
| 750 |
+
# print("t_en", t_en.shape, t_en)
|
| 751 |
+
t_en = model.text_encoder(texts, input_lengths, text_mask)
|
| 752 |
+
asr = (t_en @ s2s_attn_mono)
|
| 753 |
+
|
| 754 |
+
d_gt = s2s_attn_mono.sum(axis=-1).detach()
|
| 755 |
+
|
| 756 |
+
ss = []
|
| 757 |
+
gs = []
|
| 758 |
+
|
| 759 |
+
for bib in range(len(mel_input_length)):
|
| 760 |
+
mel_length = int(mel_input_length[bib].item())
|
| 761 |
+
mel = mels[bib, :, :mel_input_length[bib]]
|
| 762 |
+
s = model.predictor_encoder(mel.unsqueeze(0).unsqueeze(1))
|
| 763 |
+
ss.append(s)
|
| 764 |
+
s = model.style_encoder(mel.unsqueeze(0).unsqueeze(1))
|
| 765 |
+
gs.append(s)
|
| 766 |
+
|
| 767 |
+
s = torch.stack(ss).squeeze(1)
|
| 768 |
+
gs = torch.stack(gs).squeeze(1)
|
| 769 |
+
s_trg = torch.cat([s, gs], dim=-1).detach()
|
| 770 |
+
# print("texts", texts.shape, texts)
|
| 771 |
+
bert_dur = model.bert(texts, attention_mask=(~text_mask).int())
|
| 772 |
+
d_en = model.bert_encoder(bert_dur).transpose(-1, -2)
|
| 773 |
+
d, p = model.predictor(d_en, s,
|
| 774 |
+
input_lengths,
|
| 775 |
+
s2s_attn_mono,
|
| 776 |
+
text_mask)
|
| 777 |
+
# get clips
|
| 778 |
+
mel_len = int(mel_input_length.min().item() / 2 - 1)
|
| 779 |
+
en = []
|
| 780 |
+
gt = []
|
| 781 |
+
p_en = []
|
| 782 |
+
wav = []
|
| 783 |
+
|
| 784 |
+
for bib in range(len(mel_input_length)):
|
| 785 |
+
mel_length = int(mel_input_length[bib].item() / 2)
|
| 786 |
+
|
| 787 |
+
random_start = np.random.randint(0, mel_length - mel_len)
|
| 788 |
+
en.append(asr[bib, :, random_start:random_start + mel_len])
|
| 789 |
+
p_en.append(p[bib, :, random_start:random_start + mel_len])
|
| 790 |
+
|
| 791 |
+
gt.append(mels[bib, :, (random_start * 2):((random_start + mel_len) * 2)])
|
| 792 |
+
|
| 793 |
+
y = waves[bib][(random_start * 2) * 300:((random_start + mel_len) * 2) * 300]
|
| 794 |
+
wav.append(torch.from_numpy(y).to(device))
|
| 795 |
+
|
| 796 |
+
wav = torch.stack(wav).float().detach()
|
| 797 |
+
|
| 798 |
+
en = torch.stack(en)
|
| 799 |
+
p_en = torch.stack(p_en)
|
| 800 |
+
gt = torch.stack(gt).detach()
|
| 801 |
+
|
| 802 |
+
s = model.predictor_encoder(gt.unsqueeze(1))
|
| 803 |
+
|
| 804 |
+
F0_fake, N_fake = model.predictor(texts=p_en, style=s, f0=True)
|
| 805 |
+
|
| 806 |
+
loss_dur = 0
|
| 807 |
+
for _s2s_pred, _text_input, _text_length in zip(d, (d_gt), input_lengths):
|
| 808 |
+
_s2s_pred = _s2s_pred[:_text_length, :]
|
| 809 |
+
_text_input = _text_input[:_text_length].long()
|
| 810 |
+
_s2s_trg = torch.zeros_like(_s2s_pred)
|
| 811 |
+
for bib in range(_s2s_trg.shape[0]):
|
| 812 |
+
_s2s_trg[bib, :_text_input[bib]] = 1
|
| 813 |
+
_dur_pred = torch.sigmoid(_s2s_pred).sum(axis=1)
|
| 814 |
+
loss_dur += F.l1_loss(_dur_pred[1:_text_length - 1],
|
| 815 |
+
_text_input[1:_text_length - 1])
|
| 816 |
+
|
| 817 |
+
loss_dur /= texts.size(0)
|
| 818 |
+
|
| 819 |
+
s = model.style_encoder(gt.unsqueeze(1))
|
| 820 |
+
|
| 821 |
+
y_rec = model.decoder(en, F0_fake, N_fake, s)
|
| 822 |
+
loss_mel = stft_loss(y_rec.squeeze(1), wav.detach())
|
| 823 |
+
|
| 824 |
+
F0_real, _, F0 = model.pitch_extractor(gt.unsqueeze(1))
|
| 825 |
+
|
| 826 |
+
loss_F0 = F.l1_loss(F0_real, F0_fake) / 10
|
| 827 |
+
|
| 828 |
+
loss_test += accelerator.gather(loss_mel).mean()
|
| 829 |
+
loss_align += accelerator.gather(loss_dur).mean()
|
| 830 |
+
loss_f += accelerator.gather(loss_F0).mean()
|
| 831 |
+
|
| 832 |
+
iters_test += 1
|
| 833 |
+
except Exception as e:
|
| 834 |
+
accelerator.print(f"Eval errored with: \n {str(e)}")
|
| 835 |
+
continue
|
| 836 |
+
|
| 837 |
+
accelerator.print('Epochs:', epoch + 1)
|
| 838 |
+
try:
|
| 839 |
+
logger.info('Validation loss: %.3f, Dur loss: %.3f, F0 loss: %.3f' % (
|
| 840 |
+
loss_test / iters_test, loss_align / iters_test, loss_f / iters_test) + '\n', main_process_only=True)
|
| 841 |
+
|
| 842 |
+
|
| 843 |
+
accelerator.log({'eval/mel_loss': float(loss_test / iters_test),
|
| 844 |
+
'eval/dur_loss': float(loss_test / iters_test),
|
| 845 |
+
'eval/F0_loss': float(loss_f / iters_test)},
|
| 846 |
+
step=(i + 1) * (epoch + 1))
|
| 847 |
+
except ZeroDivisionError:
|
| 848 |
+
accelerator.print("Eval loss was divided by zero... skipping eval cycle")
|
| 849 |
+
|
| 850 |
+
if epoch < diff_epoch:
|
| 851 |
+
# generating reconstruction examples with GT duration
|
| 852 |
+
|
| 853 |
+
with torch.no_grad():
|
| 854 |
+
for bib in range(len(asr)):
|
| 855 |
+
mel_length = int(mel_input_length[bib].item())
|
| 856 |
+
gt = mels[bib, :, :mel_length].unsqueeze(0)
|
| 857 |
+
en = asr[bib, :, :mel_length // 2].unsqueeze(0)
|
| 858 |
+
|
| 859 |
+
F0_real, _, _ = model.pitch_extractor(gt.unsqueeze(1))
|
| 860 |
+
F0_real = F0_real.unsqueeze(0)
|
| 861 |
+
s = model.style_encoder(gt.unsqueeze(1))
|
| 862 |
+
real_norm = log_norm(gt.unsqueeze(1)).squeeze(1)
|
| 863 |
+
|
| 864 |
+
try:
|
| 865 |
+
y_rec = model.decoder(en, F0_real.squeeze(0), real_norm, s)
|
| 866 |
+
except Exception as e:
|
| 867 |
+
accelerator.print(str(e))
|
| 868 |
+
accelerator.print(F0_real.size())
|
| 869 |
+
accelerator.print(F0_real.squeeze(0).size())
|
| 870 |
+
|
| 871 |
+
s_dur = model.predictor_encoder(gt.unsqueeze(1))
|
| 872 |
+
p_en = p[bib, :, :mel_length // 2].unsqueeze(0)
|
| 873 |
+
F0_fake, N_fake = model.predictor(texts=p_en, style=s_dur, f0=True)
|
| 874 |
+
|
| 875 |
+
y_pred = model.decoder(en, F0_fake, N_fake, s)
|
| 876 |
+
|
| 877 |
+
# writer.add_audio('pred/y' + str(bib), y_pred.cpu().numpy().squeeze(), epoch, sample_rate=sr)
|
| 878 |
+
if accelerator.is_main_process:
|
| 879 |
+
log_audio(accelerator, y_pred.detach().cpu().numpy().squeeze(), bib, "pred/y", epoch, sr, tracker=tracker)
|
| 880 |
+
|
| 881 |
+
if epoch == 0:
|
| 882 |
+
# writer.add_audio('gt/y' + str(bib), waves[bib].squeeze(), epoch, sample_rate=sr)
|
| 883 |
+
if accelerator.is_main_process:
|
| 884 |
+
log_audio(accelerator, waves[bib].squeeze(), bib, "gt/y", epoch, sr, tracker=tracker)
|
| 885 |
+
|
| 886 |
+
if bib >= 10:
|
| 887 |
+
break
|
| 888 |
+
else:
|
| 889 |
+
|
| 890 |
+
try:
|
| 891 |
+
# generating sampled speech from text directly
|
| 892 |
+
with torch.no_grad():
|
| 893 |
+
# compute reference styles
|
| 894 |
+
if multispeaker and epoch >= diff_epoch:
|
| 895 |
+
ref_ss = model.style_encoder(ref_mels.unsqueeze(1))
|
| 896 |
+
ref_sp = model.predictor_encoder(ref_mels.unsqueeze(1))
|
| 897 |
+
ref_s = torch.cat([ref_ss, ref_sp], dim=1)
|
| 898 |
+
|
| 899 |
+
for bib in range(len(d_en)):
|
| 900 |
+
if multispeaker:
|
| 901 |
+
s_pred = sampler(noise=torch.randn((1, 256)).unsqueeze(1).to(texts.device),
|
| 902 |
+
embedding=bert_dur[bib].unsqueeze(0),
|
| 903 |
+
embedding_scale=1,
|
| 904 |
+
features=ref_s[bib].unsqueeze(0),
|
| 905 |
+
# reference from the same speaker as the embedding
|
| 906 |
+
num_steps=5).squeeze(1)
|
| 907 |
+
else:
|
| 908 |
+
s_pred = sampler(noise=torch.ones((1, 1, 256)).to(texts.device)*0.5,
|
| 909 |
+
embedding=bert_dur[bib].unsqueeze(0),
|
| 910 |
+
embedding_scale=1,
|
| 911 |
+
num_steps=5).squeeze(1)
|
| 912 |
+
|
| 913 |
+
s = s_pred[:, 128:]
|
| 914 |
+
ref = s_pred[:, :128]
|
| 915 |
+
# print(model.predictor)
|
| 916 |
+
# print(d_en[bib, :, :input_lengths[bib]])
|
| 917 |
+
d = model.predictor.module.text_encoder(d_en[bib, :, :input_lengths[bib]].unsqueeze(0),
|
| 918 |
+
s, input_lengths[bib, ...].unsqueeze(0),
|
| 919 |
+
text_mask[bib, :input_lengths[bib]].unsqueeze(0))
|
| 920 |
+
|
| 921 |
+
x = model.predictor.module.lstm(d)
|
| 922 |
+
x_mod = model.predictor.module.prepare_projection(x) # 640 -> 512
|
| 923 |
+
duration = model.predictor.module.duration_proj(x_mod)
|
| 924 |
+
|
| 925 |
+
duration = torch.sigmoid(duration).sum(axis=-1)
|
| 926 |
+
pred_dur = torch.round(duration.squeeze(0)).clamp(min=1)
|
| 927 |
+
|
| 928 |
+
pred_dur[-1] += 5
|
| 929 |
+
|
| 930 |
+
pred_aln_trg = torch.zeros(input_lengths[bib], int(pred_dur.sum().data))
|
| 931 |
+
c_frame = 0
|
| 932 |
+
for i in range(pred_aln_trg.size(0)):
|
| 933 |
+
pred_aln_trg[i, c_frame:c_frame + int(pred_dur[i].data)] = 1
|
| 934 |
+
c_frame += int(pred_dur[i].data)
|
| 935 |
+
|
| 936 |
+
# encode prosody
|
| 937 |
+
en = (d.transpose(-1, -2) @ pred_aln_trg.unsqueeze(0).to(texts.device))
|
| 938 |
+
F0_pred, N_pred = model.predictor(texts=en, style=s, f0=True)
|
| 939 |
+
out = model.decoder(
|
| 940 |
+
(t_en[bib, :, :input_lengths[bib]].unsqueeze(0) @ pred_aln_trg.unsqueeze(0).to(texts.device)),
|
| 941 |
+
F0_pred, N_pred, ref.squeeze().unsqueeze(0))
|
| 942 |
+
|
| 943 |
+
# writer.add_audio('pred/y' + str(bib), out.cpu().numpy().squeeze(), epoch, sample_rate=sr)
|
| 944 |
+
if accelerator.is_main_process:
|
| 945 |
+
log_audio(accelerator, out.detach().cpu().numpy().squeeze(), bib, "pred/y", epoch, sr, tracker=tracker)
|
| 946 |
+
|
| 947 |
+
if bib >= 5:
|
| 948 |
+
break
|
| 949 |
+
except Exception as e:
|
| 950 |
+
accelerator.print('error -> ', e)
|
| 951 |
+
accelerator.print("some of the samples couldn't be evaluated, skipping those.")
|
| 952 |
+
|
| 953 |
+
if epoch % saving_epoch == 0:
|
| 954 |
+
if (loss_test / iters_test) < best_loss:
|
| 955 |
+
best_loss = loss_test / iters_test
|
| 956 |
+
try:
|
| 957 |
+
accelerator.print('Saving..')
|
| 958 |
+
state = {
|
| 959 |
+
'net': {key: model[key].state_dict() for key in model},
|
| 960 |
+
'optimizer': optimizer.state_dict(),
|
| 961 |
+
'iters': iters,
|
| 962 |
+
'val_loss': loss_test / iters_test,
|
| 963 |
+
'epoch': epoch,
|
| 964 |
+
}
|
| 965 |
+
except ZeroDivisionError:
|
| 966 |
+
accelerator.print('No iter test, Re-Saving..')
|
| 967 |
+
state = {
|
| 968 |
+
'net': {key: model[key].state_dict() for key in model},
|
| 969 |
+
'optimizer': optimizer.state_dict(),
|
| 970 |
+
'iters': iters,
|
| 971 |
+
'val_loss': 0.1, # not zero just in case
|
| 972 |
+
'epoch': epoch,
|
| 973 |
+
}
|
| 974 |
+
|
| 975 |
+
if accelerator.is_main_process:
|
| 976 |
+
save_path = osp.join(log_dir, 'epoch_2nd_%05d.pth' % epoch)
|
| 977 |
+
torch.save(state, save_path)
|
| 978 |
+
|
| 979 |
+
# if estimate sigma, save the estimated simga
|
| 980 |
+
if model_params.diffusion.dist.estimate_sigma_data:
|
| 981 |
+
config['model_params']['diffusion']['dist']['sigma_data'] = float(np.mean(running_std))
|
| 982 |
+
|
| 983 |
+
with open(osp.join(log_dir, osp.basename(config_path)), 'w') as outfile:
|
| 984 |
+
yaml.dump(config, outfile, default_flow_style=True)
|
| 985 |
+
if accelerator.is_main_process:
|
| 986 |
+
print('Saving last pth..')
|
| 987 |
+
state = {
|
| 988 |
+
'net': {key: model[key].state_dict() for key in model},
|
| 989 |
+
'optimizer': optimizer.state_dict(),
|
| 990 |
+
'iters': iters,
|
| 991 |
+
'val_loss': loss_test / iters_test,
|
| 992 |
+
'epoch': epoch,
|
| 993 |
+
}
|
| 994 |
+
save_path = osp.join(log_dir, '2nd_phase_last.pth')
|
| 995 |
+
torch.save(state, save_path)
|
| 996 |
+
|
| 997 |
+
accelerator.end_training()
|
| 998 |
+
|
| 999 |
+
|
| 1000 |
+
if __name__ == "__main__":
|
| 1001 |
+
main()
|
train_first.py
ADDED
|
@@ -0,0 +1,459 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import os.path as osp
|
| 3 |
+
import re
|
| 4 |
+
import sys
|
| 5 |
+
import yaml
|
| 6 |
+
import shutil
|
| 7 |
+
import numpy as np
|
| 8 |
+
import torch
|
| 9 |
+
import click
|
| 10 |
+
import warnings
|
| 11 |
+
warnings.simplefilter('ignore')
|
| 12 |
+
|
| 13 |
+
# load packages
|
| 14 |
+
import random
|
| 15 |
+
import yaml
|
| 16 |
+
from munch import Munch
|
| 17 |
+
import numpy as np
|
| 18 |
+
import torch
|
| 19 |
+
from torch import nn
|
| 20 |
+
import torch.nn.functional as F
|
| 21 |
+
import torchaudio
|
| 22 |
+
import librosa
|
| 23 |
+
|
| 24 |
+
from models import *
|
| 25 |
+
from meldataset import build_dataloader
|
| 26 |
+
from utils import *
|
| 27 |
+
from losses import *
|
| 28 |
+
from optimizers import build_optimizer
|
| 29 |
+
import time
|
| 30 |
+
|
| 31 |
+
from accelerate import Accelerator
|
| 32 |
+
from accelerate.utils import LoggerType
|
| 33 |
+
from accelerate import DistributedDataParallelKwargs
|
| 34 |
+
|
| 35 |
+
from torch.utils.tensorboard import SummaryWriter
|
| 36 |
+
|
| 37 |
+
import logging
|
| 38 |
+
from accelerate.logging import get_logger
|
| 39 |
+
logger = get_logger(__name__, log_level="DEBUG")
|
| 40 |
+
|
| 41 |
+
@click.command()
|
| 42 |
+
@click.option('-p', '--config_path', default='Configs/config.yml', type=str)
|
| 43 |
+
def main(config_path):
|
| 44 |
+
config = yaml.safe_load(open(config_path))
|
| 45 |
+
|
| 46 |
+
save_iter = 10500
|
| 47 |
+
|
| 48 |
+
log_dir = config['log_dir']
|
| 49 |
+
if not osp.exists(log_dir): os.makedirs(log_dir, exist_ok=True)
|
| 50 |
+
shutil.copy(config_path, osp.join(log_dir, osp.basename(config_path)))
|
| 51 |
+
ddp_kwargs = DistributedDataParallelKwargs(find_unused_parameters=True)
|
| 52 |
+
accelerator = Accelerator(project_dir=log_dir, split_batches=True, kwargs_handlers=[ddp_kwargs], mixed_precision='bf16')
|
| 53 |
+
if accelerator.is_main_process:
|
| 54 |
+
writer = SummaryWriter(log_dir + "/tensorboard")
|
| 55 |
+
|
| 56 |
+
# write logs
|
| 57 |
+
file_handler = logging.FileHandler(osp.join(log_dir, 'train.log'))
|
| 58 |
+
file_handler.setLevel(logging.DEBUG)
|
| 59 |
+
file_handler.setFormatter(logging.Formatter('%(levelname)s:%(asctime)s: %(message)s'))
|
| 60 |
+
logger.logger.addHandler(file_handler)
|
| 61 |
+
|
| 62 |
+
batch_size = config.get('batch_size', 10)
|
| 63 |
+
device = accelerator.device
|
| 64 |
+
|
| 65 |
+
epochs = config.get('epochs_1st', 200)
|
| 66 |
+
save_freq = config.get('save_freq', 2)
|
| 67 |
+
log_interval = config.get('log_interval', 10)
|
| 68 |
+
saving_epoch = config.get('save_freq', 2)
|
| 69 |
+
|
| 70 |
+
data_params = config.get('data_params', None)
|
| 71 |
+
sr = config['preprocess_params'].get('sr', 24000)
|
| 72 |
+
train_path = data_params['train_data']
|
| 73 |
+
val_path = data_params['val_data']
|
| 74 |
+
root_path = data_params['root_path']
|
| 75 |
+
min_length = data_params['min_length']
|
| 76 |
+
OOD_data = data_params['OOD_data']
|
| 77 |
+
|
| 78 |
+
max_len = config.get('max_len', 200)
|
| 79 |
+
|
| 80 |
+
# load data
|
| 81 |
+
train_list, val_list = get_data_path_list(train_path, val_path)
|
| 82 |
+
|
| 83 |
+
train_dataloader = build_dataloader(train_list,
|
| 84 |
+
root_path,
|
| 85 |
+
OOD_data=OOD_data,
|
| 86 |
+
min_length=min_length,
|
| 87 |
+
batch_size=batch_size,
|
| 88 |
+
num_workers=2,
|
| 89 |
+
dataset_config={},
|
| 90 |
+
device=device)
|
| 91 |
+
|
| 92 |
+
val_dataloader = build_dataloader(val_list,
|
| 93 |
+
root_path,
|
| 94 |
+
OOD_data=OOD_data,
|
| 95 |
+
min_length=min_length,
|
| 96 |
+
batch_size=batch_size,
|
| 97 |
+
validation=True,
|
| 98 |
+
num_workers=0,
|
| 99 |
+
device=device,
|
| 100 |
+
dataset_config={})
|
| 101 |
+
|
| 102 |
+
with accelerator.main_process_first():
|
| 103 |
+
# load pretrained ASR model
|
| 104 |
+
ASR_config = config.get('ASR_config', False)
|
| 105 |
+
ASR_path = config.get('ASR_path', False)
|
| 106 |
+
text_aligner = load_ASR_models(ASR_path, ASR_config)
|
| 107 |
+
|
| 108 |
+
# load pretrained F0 model
|
| 109 |
+
F0_path = config.get('F0_path', False)
|
| 110 |
+
pitch_extractor = load_F0_models(F0_path)
|
| 111 |
+
|
| 112 |
+
# load BERT model
|
| 113 |
+
from Utils.PLBERT.util import load_plbert
|
| 114 |
+
BERT_path = config.get('PLBERT_dir', False)
|
| 115 |
+
plbert = load_plbert(BERT_path)
|
| 116 |
+
|
| 117 |
+
scheduler_params = {
|
| 118 |
+
"max_lr": float(config['optimizer_params'].get('lr', 1e-4)),
|
| 119 |
+
"pct_start": float(config['optimizer_params'].get('pct_start', 0.0)),
|
| 120 |
+
"epochs": epochs,
|
| 121 |
+
"steps_per_epoch": len(train_dataloader),
|
| 122 |
+
}
|
| 123 |
+
|
| 124 |
+
model_params = recursive_munch(config['model_params'])
|
| 125 |
+
multispeaker = model_params.multispeaker
|
| 126 |
+
model = build_model(model_params, text_aligner, pitch_extractor, plbert)
|
| 127 |
+
|
| 128 |
+
best_loss = float('inf') # best test loss
|
| 129 |
+
loss_train_record = list([])
|
| 130 |
+
loss_test_record = list([])
|
| 131 |
+
|
| 132 |
+
loss_params = Munch(config['loss_params'])
|
| 133 |
+
TMA_epoch = loss_params.TMA_epoch
|
| 134 |
+
|
| 135 |
+
for k in model:
|
| 136 |
+
model[k] = accelerator.prepare(model[k])
|
| 137 |
+
|
| 138 |
+
train_dataloader, val_dataloader = accelerator.prepare(
|
| 139 |
+
train_dataloader, val_dataloader
|
| 140 |
+
)
|
| 141 |
+
|
| 142 |
+
_ = [model[key].to(device) for key in model]
|
| 143 |
+
|
| 144 |
+
# initialize optimizers after preparing models for compatibility with FSDP
|
| 145 |
+
optimizer = build_optimizer({key: model[key].parameters() for key in model},
|
| 146 |
+
scheduler_params_dict= {key: scheduler_params.copy() for key in model},
|
| 147 |
+
lr=float(config['optimizer_params'].get('lr', 1e-4)))
|
| 148 |
+
|
| 149 |
+
for k, v in optimizer.optimizers.items():
|
| 150 |
+
optimizer.optimizers[k] = accelerator.prepare(optimizer.optimizers[k])
|
| 151 |
+
optimizer.schedulers[k] = accelerator.prepare(optimizer.schedulers[k])
|
| 152 |
+
|
| 153 |
+
with accelerator.main_process_first():
|
| 154 |
+
if config.get('pretrained_model', '') != '':
|
| 155 |
+
model, optimizer, start_epoch, iters = load_checkpoint(model, optimizer, config['pretrained_model'],
|
| 156 |
+
load_only_params=config.get('load_only_params', True))
|
| 157 |
+
else:
|
| 158 |
+
start_epoch = 0
|
| 159 |
+
iters = 0
|
| 160 |
+
|
| 161 |
+
# in case not distributed
|
| 162 |
+
try:
|
| 163 |
+
n_down = model.text_aligner.module.n_down
|
| 164 |
+
except:
|
| 165 |
+
n_down = model.text_aligner.n_down
|
| 166 |
+
|
| 167 |
+
# wrapped losses for compatibility with mixed precision
|
| 168 |
+
stft_loss = MultiResolutionSTFTLoss().to(device)
|
| 169 |
+
gl = GeneratorLoss(model.mpd, model.msd).to(device)
|
| 170 |
+
dl = DiscriminatorLoss(model.mpd, model.msd).to(device)
|
| 171 |
+
wl = WavLMLoss(model_params.slm.model,
|
| 172 |
+
model.wd,
|
| 173 |
+
sr,
|
| 174 |
+
model_params.slm.sr).to(device)
|
| 175 |
+
|
| 176 |
+
for epoch in range(start_epoch, epochs):
|
| 177 |
+
running_loss = 0
|
| 178 |
+
start_time = time.time()
|
| 179 |
+
|
| 180 |
+
_ = [model[key].train() for key in model]
|
| 181 |
+
|
| 182 |
+
for i, batch in enumerate(train_dataloader):
|
| 183 |
+
waves = batch[0]
|
| 184 |
+
batch = [b.to(device) for b in batch[1:]]
|
| 185 |
+
texts, input_lengths, _, _, mels, mel_input_length, _ = batch
|
| 186 |
+
|
| 187 |
+
with torch.no_grad():
|
| 188 |
+
mask = length_to_mask(mel_input_length // (2 ** n_down)).to('cuda')
|
| 189 |
+
text_mask = length_to_mask(input_lengths).to(texts.device)
|
| 190 |
+
|
| 191 |
+
ppgs, s2s_pred, s2s_attn = model.text_aligner(mels, mask, texts)
|
| 192 |
+
|
| 193 |
+
s2s_attn = s2s_attn.transpose(-1, -2)
|
| 194 |
+
s2s_attn = s2s_attn[..., 1:]
|
| 195 |
+
s2s_attn = s2s_attn.transpose(-1, -2)
|
| 196 |
+
|
| 197 |
+
with torch.no_grad():
|
| 198 |
+
attn_mask = (~mask).unsqueeze(-1).expand(mask.shape[0], mask.shape[1], text_mask.shape[-1]).float().transpose(-1, -2)
|
| 199 |
+
attn_mask = attn_mask.float() * (~text_mask).unsqueeze(-1).expand(text_mask.shape[0], text_mask.shape[1], mask.shape[-1]).float()
|
| 200 |
+
attn_mask = (attn_mask < 1)
|
| 201 |
+
|
| 202 |
+
s2s_attn.masked_fill_(attn_mask, 0.0)
|
| 203 |
+
|
| 204 |
+
with torch.no_grad():
|
| 205 |
+
mask_ST = mask_from_lens(s2s_attn, input_lengths, mel_input_length // (2 ** n_down))
|
| 206 |
+
s2s_attn_mono = maximum_path(s2s_attn, mask_ST)
|
| 207 |
+
|
| 208 |
+
# encode
|
| 209 |
+
t_en = model.text_encoder(texts, input_lengths, text_mask)
|
| 210 |
+
|
| 211 |
+
# 50% of chance of using monotonic version
|
| 212 |
+
if bool(random.getrandbits(1)):
|
| 213 |
+
asr = (t_en @ s2s_attn)
|
| 214 |
+
else:
|
| 215 |
+
asr = (t_en @ s2s_attn_mono)
|
| 216 |
+
|
| 217 |
+
# get clips
|
| 218 |
+
mel_input_length_all = accelerator.gather(mel_input_length) # for balanced load
|
| 219 |
+
mel_len = min([int(mel_input_length_all.min().item() / 2 - 1), max_len // 2])
|
| 220 |
+
mel_len_st = int(mel_input_length.min().item() / 2 - 1)
|
| 221 |
+
|
| 222 |
+
en = []
|
| 223 |
+
gt = []
|
| 224 |
+
wav = []
|
| 225 |
+
st = []
|
| 226 |
+
|
| 227 |
+
for bib in range(len(mel_input_length)):
|
| 228 |
+
mel_length = int(mel_input_length[bib].item() / 2)
|
| 229 |
+
|
| 230 |
+
random_start = np.random.randint(0, mel_length - mel_len)
|
| 231 |
+
en.append(asr[bib, :, random_start:random_start+mel_len])
|
| 232 |
+
gt.append(mels[bib, :, (random_start * 2):((random_start+mel_len) * 2)])
|
| 233 |
+
|
| 234 |
+
y = waves[bib][(random_start * 2) * 300:((random_start+mel_len) * 2) * 300]
|
| 235 |
+
wav.append(torch.from_numpy(y).to(device))
|
| 236 |
+
|
| 237 |
+
# style reference (better to be different from the GT)
|
| 238 |
+
random_start = np.random.randint(0, mel_length - mel_len_st)
|
| 239 |
+
st.append(mels[bib, :, (random_start * 2):((random_start+mel_len_st) * 2)])
|
| 240 |
+
|
| 241 |
+
en = torch.stack(en)
|
| 242 |
+
gt = torch.stack(gt).detach()
|
| 243 |
+
st = torch.stack(st).detach()
|
| 244 |
+
|
| 245 |
+
wav = torch.stack(wav).float().detach()
|
| 246 |
+
|
| 247 |
+
# clip too short to be used by the style encoder
|
| 248 |
+
if gt.shape[-1] < 80:
|
| 249 |
+
continue
|
| 250 |
+
|
| 251 |
+
with torch.no_grad():
|
| 252 |
+
real_norm = log_norm(gt.unsqueeze(1)).squeeze(1).detach()
|
| 253 |
+
F0_real, _, _ = model.pitch_extractor(gt.unsqueeze(1))
|
| 254 |
+
|
| 255 |
+
s = model.style_encoder(st.unsqueeze(1) if multispeaker else gt.unsqueeze(1))
|
| 256 |
+
|
| 257 |
+
y_rec = model.decoder(en, F0_real, real_norm, s)
|
| 258 |
+
|
| 259 |
+
# discriminator loss
|
| 260 |
+
|
| 261 |
+
if epoch >= TMA_epoch:
|
| 262 |
+
optimizer.zero_grad()
|
| 263 |
+
d_loss = dl(wav.detach().unsqueeze(1).float(), y_rec.detach()).mean()
|
| 264 |
+
accelerator.backward(d_loss)
|
| 265 |
+
optimizer.step('msd')
|
| 266 |
+
optimizer.step('mpd')
|
| 267 |
+
else:
|
| 268 |
+
d_loss = 0
|
| 269 |
+
|
| 270 |
+
# generator loss
|
| 271 |
+
optimizer.zero_grad()
|
| 272 |
+
loss_mel = stft_loss(y_rec.squeeze(), wav.detach())
|
| 273 |
+
|
| 274 |
+
if epoch >= TMA_epoch: # start TMA training
|
| 275 |
+
loss_s2s = 0
|
| 276 |
+
for _s2s_pred, _text_input, _text_length in zip(s2s_pred, texts, input_lengths):
|
| 277 |
+
loss_s2s += F.cross_entropy(_s2s_pred[:_text_length], _text_input[:_text_length])
|
| 278 |
+
loss_s2s /= texts.size(0)
|
| 279 |
+
|
| 280 |
+
loss_mono = F.l1_loss(s2s_attn, s2s_attn_mono) * 10
|
| 281 |
+
|
| 282 |
+
loss_gen_all = gl(wav.detach().unsqueeze(1).float(), y_rec).mean()
|
| 283 |
+
loss_slm = wl(wav.detach(), y_rec).mean()
|
| 284 |
+
|
| 285 |
+
g_loss = loss_params.lambda_mel * loss_mel + \
|
| 286 |
+
loss_params.lambda_mono * loss_mono + \
|
| 287 |
+
loss_params.lambda_s2s * loss_s2s + \
|
| 288 |
+
loss_params.lambda_gen * loss_gen_all + \
|
| 289 |
+
loss_params.lambda_slm * loss_slm
|
| 290 |
+
|
| 291 |
+
else:
|
| 292 |
+
loss_s2s = 0
|
| 293 |
+
loss_mono = 0
|
| 294 |
+
loss_gen_all = 0
|
| 295 |
+
loss_slm = 0
|
| 296 |
+
g_loss = loss_mel
|
| 297 |
+
|
| 298 |
+
running_loss += accelerator.gather(loss_mel).mean().item()
|
| 299 |
+
|
| 300 |
+
accelerator.backward(g_loss)
|
| 301 |
+
|
| 302 |
+
optimizer.step('text_encoder')
|
| 303 |
+
optimizer.step('style_encoder')
|
| 304 |
+
optimizer.step('decoder')
|
| 305 |
+
|
| 306 |
+
if epoch >= TMA_epoch:
|
| 307 |
+
optimizer.step('text_aligner')
|
| 308 |
+
optimizer.step('pitch_extractor')
|
| 309 |
+
|
| 310 |
+
iters = iters + 1
|
| 311 |
+
|
| 312 |
+
if (i+1)%log_interval == 0 and accelerator.is_main_process:
|
| 313 |
+
log_print ('Epoch [%d/%d], Step [%d/%d], Mel Loss: %.5f, Gen Loss: %.5f, Disc Loss: %.5f, Mono Loss: %.5f, S2S Loss: %.5f, SLM Loss: %.5f'
|
| 314 |
+
%(epoch+1, epochs, i+1, len(train_list)//batch_size, running_loss / log_interval, loss_gen_all, d_loss, loss_mono, loss_s2s, loss_slm), logger)
|
| 315 |
+
|
| 316 |
+
writer.add_scalar('train/mel_loss', running_loss / log_interval, iters)
|
| 317 |
+
writer.add_scalar('train/gen_loss', loss_gen_all, iters)
|
| 318 |
+
writer.add_scalar('train/d_loss', d_loss, iters)
|
| 319 |
+
writer.add_scalar('train/mono_loss', loss_mono, iters)
|
| 320 |
+
writer.add_scalar('train/s2s_loss', loss_s2s, iters)
|
| 321 |
+
writer.add_scalar('train/slm_loss', loss_slm, iters)
|
| 322 |
+
|
| 323 |
+
running_loss = 0
|
| 324 |
+
|
| 325 |
+
print('Time elasped:', time.time()-start_time)
|
| 326 |
+
|
| 327 |
+
if (i+1)%save_iter == 0 and accelerator.is_main_process:
|
| 328 |
+
|
| 329 |
+
print(f'Saving on step {epoch*len(train_dataloader)+i}...')
|
| 330 |
+
state = {
|
| 331 |
+
'net': {key: model[key].state_dict() for key in model},
|
| 332 |
+
'optimizer': optimizer.state_dict(),
|
| 333 |
+
'iters': iters,
|
| 334 |
+
'epoch': epoch,
|
| 335 |
+
}
|
| 336 |
+
save_path = osp.join(log_dir, f'2nd_phase_{epoch*len(train_dataloader)+i}.pth')
|
| 337 |
+
torch.save(state, save_path)
|
| 338 |
+
|
| 339 |
+
loss_test = 0
|
| 340 |
+
|
| 341 |
+
_ = [model[key].eval() for key in model]
|
| 342 |
+
|
| 343 |
+
with torch.no_grad():
|
| 344 |
+
iters_test = 0
|
| 345 |
+
for batch_idx, batch in enumerate(val_dataloader):
|
| 346 |
+
optimizer.zero_grad()
|
| 347 |
+
|
| 348 |
+
waves = batch[0]
|
| 349 |
+
batch = [b.to(device) for b in batch[1:]]
|
| 350 |
+
texts, input_lengths, _, _, mels, mel_input_length, _ = batch
|
| 351 |
+
|
| 352 |
+
with torch.no_grad():
|
| 353 |
+
mask = length_to_mask(mel_input_length // (2 ** n_down)).to('cuda')
|
| 354 |
+
ppgs, s2s_pred, s2s_attn = model.text_aligner(mels, mask, texts)
|
| 355 |
+
|
| 356 |
+
s2s_attn = s2s_attn.transpose(-1, -2)
|
| 357 |
+
s2s_attn = s2s_attn[..., 1:]
|
| 358 |
+
s2s_attn = s2s_attn.transpose(-1, -2)
|
| 359 |
+
|
| 360 |
+
text_mask = length_to_mask(input_lengths).to(texts.device)
|
| 361 |
+
attn_mask = (~mask).unsqueeze(-1).expand(mask.shape[0], mask.shape[1], text_mask.shape[-1]).float().transpose(-1, -2)
|
| 362 |
+
attn_mask = attn_mask.float() * (~text_mask).unsqueeze(-1).expand(text_mask.shape[0], text_mask.shape[1], mask.shape[-1]).float()
|
| 363 |
+
attn_mask = (attn_mask < 1)
|
| 364 |
+
s2s_attn.masked_fill_(attn_mask, 0.0)
|
| 365 |
+
|
| 366 |
+
# encode
|
| 367 |
+
t_en = model.text_encoder(texts, input_lengths, text_mask)
|
| 368 |
+
|
| 369 |
+
asr = (t_en @ s2s_attn)
|
| 370 |
+
|
| 371 |
+
# get clips
|
| 372 |
+
mel_input_length_all = accelerator.gather(mel_input_length) # for balanced load
|
| 373 |
+
mel_len = min([int(mel_input_length.min().item() / 2 - 1), max_len // 2])
|
| 374 |
+
|
| 375 |
+
en = []
|
| 376 |
+
gt = []
|
| 377 |
+
wav = []
|
| 378 |
+
for bib in range(len(mel_input_length)):
|
| 379 |
+
mel_length = int(mel_input_length[bib].item() / 2)
|
| 380 |
+
|
| 381 |
+
random_start = np.random.randint(0, mel_length - mel_len)
|
| 382 |
+
en.append(asr[bib, :, random_start:random_start+mel_len])
|
| 383 |
+
gt.append(mels[bib, :, (random_start * 2):((random_start+mel_len) * 2)])
|
| 384 |
+
y = waves[bib][(random_start * 2) * 300:((random_start+mel_len) * 2) * 300]
|
| 385 |
+
wav.append(torch.from_numpy(y).to('cuda'))
|
| 386 |
+
|
| 387 |
+
wav = torch.stack(wav).float().detach()
|
| 388 |
+
|
| 389 |
+
en = torch.stack(en)
|
| 390 |
+
gt = torch.stack(gt).detach()
|
| 391 |
+
|
| 392 |
+
F0_real, _, F0 = model.pitch_extractor(gt.unsqueeze(1))
|
| 393 |
+
s = model.style_encoder(gt.unsqueeze(1))
|
| 394 |
+
real_norm = log_norm(gt.unsqueeze(1)).squeeze(1)
|
| 395 |
+
y_rec = model.decoder(en, F0_real, real_norm, s)
|
| 396 |
+
|
| 397 |
+
loss_mel = stft_loss(y_rec.squeeze(), wav.detach())
|
| 398 |
+
|
| 399 |
+
loss_test += accelerator.gather(loss_mel).mean().item()
|
| 400 |
+
iters_test += 1
|
| 401 |
+
|
| 402 |
+
if accelerator.is_main_process:
|
| 403 |
+
print('Epochs:', epoch + 1)
|
| 404 |
+
log_print('Validation loss: %.3f' % (loss_test / iters_test) + '\n\n\n\n', logger)
|
| 405 |
+
print('\n\n\n')
|
| 406 |
+
writer.add_scalar('eval/mel_loss', loss_test / iters_test, epoch + 1)
|
| 407 |
+
attn_image = get_image(s2s_attn[0].cpu().numpy().squeeze())
|
| 408 |
+
writer.add_figure('eval/attn', attn_image, epoch)
|
| 409 |
+
|
| 410 |
+
with torch.no_grad():
|
| 411 |
+
for bib in range(len(asr)):
|
| 412 |
+
mel_length = int(mel_input_length[bib].item())
|
| 413 |
+
gt = mels[bib, :, :mel_length].unsqueeze(0)
|
| 414 |
+
en = asr[bib, :, :mel_length // 2].unsqueeze(0)
|
| 415 |
+
|
| 416 |
+
F0_real, _, _ = model.pitch_extractor(gt.unsqueeze(1))
|
| 417 |
+
F0_real = F0_real.unsqueeze(0)
|
| 418 |
+
s = model.style_encoder(gt.unsqueeze(1))
|
| 419 |
+
real_norm = log_norm(gt.unsqueeze(1)).squeeze(1)
|
| 420 |
+
|
| 421 |
+
y_rec = model.decoder(en, F0_real, real_norm, s)
|
| 422 |
+
|
| 423 |
+
writer.add_audio('eval/y' + str(bib), y_rec.cpu().numpy().squeeze(), epoch, sample_rate=sr)
|
| 424 |
+
if epoch == 0:
|
| 425 |
+
writer.add_audio('gt/y' + str(bib), waves[bib].squeeze(), epoch, sample_rate=sr)
|
| 426 |
+
|
| 427 |
+
if bib >= 15:
|
| 428 |
+
break
|
| 429 |
+
|
| 430 |
+
if epoch % saving_epoch == 0:
|
| 431 |
+
if (loss_test / iters_test) < best_loss:
|
| 432 |
+
best_loss = loss_test / iters_test
|
| 433 |
+
print('Saving..')
|
| 434 |
+
state = {
|
| 435 |
+
'net': {key: model[key].state_dict() for key in model},
|
| 436 |
+
'optimizer': optimizer.state_dict(),
|
| 437 |
+
'iters': iters,
|
| 438 |
+
'val_loss': loss_test / iters_test,
|
| 439 |
+
'epoch': epoch,
|
| 440 |
+
}
|
| 441 |
+
save_path = osp.join(log_dir, 'epoch_1st_%05d.pth' % epoch)
|
| 442 |
+
torch.save(state, save_path)
|
| 443 |
+
|
| 444 |
+
if accelerator.is_main_process:
|
| 445 |
+
print('Saving..')
|
| 446 |
+
state = {
|
| 447 |
+
'net': {key: model[key].state_dict() for key in model},
|
| 448 |
+
'optimizer': optimizer.state_dict(),
|
| 449 |
+
'iters': iters,
|
| 450 |
+
'val_loss': loss_test / iters_test,
|
| 451 |
+
'epoch': epoch,
|
| 452 |
+
}
|
| 453 |
+
save_path = osp.join(log_dir, config.get('first_stage_path', 'first_stage.pth'))
|
| 454 |
+
torch.save(state, save_path)
|
| 455 |
+
|
| 456 |
+
|
| 457 |
+
|
| 458 |
+
if __name__=="__main__":
|
| 459 |
+
main()
|