File size: 1,484 Bytes
cc14d08
 
 
 
 
 
 
d1f13e2
cc14d08
 
 
 
 
 
 
d1f13e2
 
 
 
cc14d08
 
 
 
5e416e1
d1f13e2
cc14d08
 
d1f13e2
cc14d08
d1f13e2
cc14d08
 
 
 
 
d1f13e2
 
 
 
 
 
 
 
 
 
cc14d08
 
 
 
d1f13e2
cc14d08
d1f13e2
cc14d08
d1f13e2
cc14d08
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
---
library_name: peft
base_model: KT-AI/midm-bitext-S-7B-inst-v1
---

# Model Card for Model ID

* KT-AI/midm-bitext-S-7B-inst-v1



## Model Details

### Model Description

* NSMC μ˜ν™” 리뷰 데이터에 λŒ€ν•˜μ—¬ KT-AI/midm-bitext-S-7B-inst-v1 λ―Έμ„ΈνŠœλ‹.
* μž…λ ₯ ν”„λ‘¬ν”„νŠΈλ₯Ό μ΄μš©ν•˜μ—¬ λ°μ΄ν„°μ…‹μ˜ document(리뷰)κ°€ 긍정적인 λ‚΄μš©μ΄λ©΄ '1'을 뢀정적인 λ‚΄μš©μ΄λ©΄ '0'을 μ˜ˆμΈ‘ν•˜λ„λ‘ 함.
* train data: nsmc train μƒμœ„ 2000개 μƒ˜ν”Œ 이용
* test data: nsmc test μƒμœ„ 2000개 μƒ˜ν”Œ 이용


### Training Data

'nsmc'
* μƒμœ„ 2000개 데이터 이용


### Training Procedure 

* prepare_sample_text에 리뷰λ₯Ό 긍정/λΆ€μ •μœΌλ‘œ νŒλ‹¨ν•˜λ„λ‘ μž…λ ₯ ν”„λ‘¬ν”„νŠΈ μˆ˜μ •ν•˜μ˜€μŒ.



#### Training Hyperparameters

* per_device_train_batch_size: 1
* per_device_eval_batch_size: 1
* learning_rate: 1e-4
* gradient_accumulation_steps: 2
* optimizer: paged_adamw_32bit
* lr_scheduler_type: cosine
* lr_scheduler_warmup_ratio: 0.03
* training_args.logging_steps: 50
* training_args.max_steps : 1000
* trainable params: trainable params: 16,744,448 || all params: 7,034,347,520 || trainable%: 0.23803839591934178


### Results

TrainOutput(global_step=1000, training_loss=1.0208648338317872, metrics={'train_runtime': 1128.0266, 'train_samples_per_second': 1.773, 'train_steps_per_second': 0.887, 'total_flos': 3.1051694997504e+16, 'train_loss': 1.0208648338317872, 'epoch': 1.0})

#### Accruacy

λ―Έμ„ΈνŠœλ‹ ν›„ λͺ¨λΈμ˜ 정확도:0.61