File size: 1,484 Bytes
cc14d08 d1f13e2 cc14d08 d1f13e2 cc14d08 5e416e1 d1f13e2 cc14d08 d1f13e2 cc14d08 d1f13e2 cc14d08 d1f13e2 cc14d08 d1f13e2 cc14d08 d1f13e2 cc14d08 d1f13e2 cc14d08 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
---
library_name: peft
base_model: KT-AI/midm-bitext-S-7B-inst-v1
---
# Model Card for Model ID
* KT-AI/midm-bitext-S-7B-inst-v1
## Model Details
### Model Description
* NSMC μν 리뷰 λ°μ΄ν°μ λνμ¬ KT-AI/midm-bitext-S-7B-inst-v1 λ―ΈμΈνλ.
* μ
λ ₯ ν둬ννΈλ₯Ό μ΄μ©νμ¬ λ°μ΄ν°μ
μ document(리뷰)κ° κΈμ μ μΈ λ΄μ©μ΄λ©΄ '1'μ λΆμ μ μΈ λ΄μ©μ΄λ©΄ '0'μ μμΈ‘νλλ‘ ν¨.
* train data: nsmc train μμ 2000κ° μν μ΄μ©
* test data: nsmc test μμ 2000κ° μν μ΄μ©
### Training Data
'nsmc'
* μμ 2000κ° λ°μ΄ν° μ΄μ©
### Training Procedure
* prepare_sample_textμ 리뷰λ₯Ό κΈμ /λΆμ μΌλ‘ νλ¨νλλ‘ μ
λ ₯ ν둬ννΈ μμ νμμ.
#### Training Hyperparameters
* per_device_train_batch_size: 1
* per_device_eval_batch_size: 1
* learning_rate: 1e-4
* gradient_accumulation_steps: 2
* optimizer: paged_adamw_32bit
* lr_scheduler_type: cosine
* lr_scheduler_warmup_ratio: 0.03
* training_args.logging_steps: 50
* training_args.max_steps : 1000
* trainable params: trainable params: 16,744,448 || all params: 7,034,347,520 || trainable%: 0.23803839591934178
### Results
TrainOutput(global_step=1000, training_loss=1.0208648338317872, metrics={'train_runtime': 1128.0266, 'train_samples_per_second': 1.773, 'train_steps_per_second': 0.887, 'total_flos': 3.1051694997504e+16, 'train_loss': 1.0208648338317872, 'epoch': 1.0})
#### Accruacy
λ―ΈμΈνλ ν λͺ¨λΈμ μ νλ:0.61
|