uploaded readme
Browse files
README.md
ADDED
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Quantization made by Richard Erkhov.
|
2 |
+
|
3 |
+
[Github](https://github.com/RichardErkhov)
|
4 |
+
|
5 |
+
[Discord](https://discord.gg/pvy7H8DZMG)
|
6 |
+
|
7 |
+
[Request more models](https://github.com/RichardErkhov/quant_request)
|
8 |
+
|
9 |
+
|
10 |
+
InstructLM-1.3B - AWQ
|
11 |
+
- Model creator: https://huggingface.co/instruction-pretrain/
|
12 |
+
- Original model: https://huggingface.co/instruction-pretrain/InstructLM-1.3B/
|
13 |
+
|
14 |
+
|
15 |
+
|
16 |
+
|
17 |
+
Original model description:
|
18 |
+
---
|
19 |
+
license: apache-2.0
|
20 |
+
datasets:
|
21 |
+
- tiiuae/falcon-refinedweb
|
22 |
+
- instruction-pretrain/ft-instruction-synthesizer-collection
|
23 |
+
- instruction-pretrain/general-instruction-augmented-corpora
|
24 |
+
language:
|
25 |
+
- en
|
26 |
+
---
|
27 |
+
# Instruction Pre-Training: Language Models are Supervised Multitask Learners (EMNLP 2024)
|
28 |
+
This repo contains the **general models pre-trained from scratch** (on 100B tokens) in our paper [Instruction Pre-Training: Language Models are Supervised Multitask Learners](https://huggingface.co/papers/2406.14491).
|
29 |
+
|
30 |
+
We explore supervised multitask pre-training by proposing ***Instruction Pre-Training***, a framework that scalably augments massive raw corpora with instruction-response pairs to pre-train language models. The instruction-response pairs are generated by an efficient instruction synthesizer built on open-source models. In our experiments, we synthesize 200M instruction-response pairs covering 40+ task categories to verify the effectiveness of *Instruction Pre-Training*. Instruction Pre-Training* outperforms *Vanilla Pre-training* in both general pre-training from scratch and domain-adaptive continual pre-training. **In pre-training from scratch, *Instruction Pre-Training* not only improves pre-trained base models but also benefits more from further instruction tuning.** In continual pre-training, *Instruction Pre-Training* enables Llama3-8B to be comparable to or even outperform Llama3-70B.
|
31 |
+
|
32 |
+
<p align='center'>
|
33 |
+
<img src="https://cdn-uploads.huggingface.co/production/uploads/66711d2ee12fa6cc5f5dfc89/vRdsFIVQptbNaGiZ18Lih.png" width="400">
|
34 |
+
</p>
|
35 |
+
|
36 |
+
### [2024/11/29] 🤗 Introduce the multimodal version of instruction synthesizer at [AdaMLLM](https://huggingface.co/papers/2411.19930), for synthesizing visual instruction tasks 🤗
|
37 |
+
|
38 |
+
**************************** **Updates** ****************************
|
39 |
+
* 2024/11/30: Released the multimodal version of the instruction synthesizer: [Visual Instruction Synthesizer](https://huggingface.co/AdaptLLM/Adapt-MLLM-to-Domains)
|
40 |
+
* 2024/9/20: Our paper has been accepted by EMNLP 2024 main conference🎉
|
41 |
+
* 2024/9/11: Updated [FAQ on continual pre-training from Llama3](https://huggingface.co/instruction-pretrain/instruction-synthesizer)
|
42 |
+
* 2024/8/29: Updated [guidelines](https://huggingface.co/instruction-pretrain/medicine-Llama3-8B) on evaluating any 🤗Huggingface models on the domain-specific tasks
|
43 |
+
* 2024/7/31: Updated pre-training suggestions in the `Advanced Usage` section of [instruction-synthesizer](https://huggingface.co/instruction-pretrain/instruction-synthesizer)
|
44 |
+
* 2024/7/15: We scaled up the pre-trained tokens from 100B to 250B, with the number of synthesized instruction-response pairs reaching 500M. The performance trend on downstream tasks throughout the pre-training process:
|
45 |
+
<p align='left'>
|
46 |
+
<img src="https://cdn-uploads.huggingface.co/production/uploads/66711d2ee12fa6cc5f5dfc89/0okCfRkC6uALTfuNxt0Fa.png" width="500">
|
47 |
+
</p>
|
48 |
+
* 2024/6/21: Released the [paper](https://huggingface.co/papers/2406.14491), [code](https://github.com/microsoft/LMOps), and [resources](https://huggingface.co/instruction-pretrain)
|
49 |
+
|
50 |
+
## Resources
|
51 |
+
**🤗 We share our data and models with example usages, feel free to open any discussions at [this page](https://huggingface.co/papers/2406.14491)! 🤗**
|
52 |
+
|
53 |
+
- Thanks to the demo [davanstrien/instruction-synthesizer](https://huggingface.co/spaces/davanstrien/instruction-synthesizer) for implementing our approach
|
54 |
+
- Context-Based Instruction Synthesizer: [instruction-synthesizer](https://huggingface.co/instruction-pretrain/instruction-synthesizer)
|
55 |
+
- Fine-Tuning Data for the Synthesizer: [ft-instruction-synthesizer-collection](https://huggingface.co/datasets/instruction-pretrain/ft-instruction-synthesizer-collection)
|
56 |
+
- General Models Pre-Trained from Scratch (on 100B tokes):
|
57 |
+
- [InstructLM-500M](https://huggingface.co/instruction-pretrain/InstructLM-500M)
|
58 |
+
- [InstructLM-1.3B](https://huggingface.co/instruction-pretrain/InstructLM-1.3B)
|
59 |
+
- Domain-Specific Models Pre-Trained from Llama3-8B:
|
60 |
+
- [Finance-Llama3-8B](https://huggingface.co/instruction-pretrain/finance-Llama3-8B)
|
61 |
+
- [Biomedicine-Llama3-8B](https://huggingface.co/instruction-pretrain/medicine-Llama3-8B)
|
62 |
+
- General Instruction-Augmented Corpora: [general-instruction-augmented-corpora](https://huggingface.co/datasets/instruction-pretrain/general-instruction-augmented-corpora)
|
63 |
+
- Domain-Specific Instruction-Augmented Corpora (no finance data to avoid ethical issues): [medicine-instruction-augmented-corpora](https://huggingface.co/datasets/instruction-pretrain/medicine-instruction-augmented-corpora)
|
64 |
+
|
65 |
+
|
66 |
+
## General Pre-Training From Scratch
|
67 |
+
We augment the [RefinedWeb corproa](https://huggingface.co/datasets/tiiuae/falcon-refinedweb) with instruction-response pairs generated by our [context-based instruction synthesizer](https://huggingface.co/instruction-pretrain/instruction-synthesizer) to pre-train general langauge models from scratch.
|
68 |
+
|
69 |
+
To evaluate our general base model using the [lm-evaluation-harness framework](https://github.com/EleutherAI/lm-evaluation-harness)
|
70 |
+
|
71 |
+
1. Setup dependencies:
|
72 |
+
```bash
|
73 |
+
git clone https://github.com/EleutherAI/lm-evaluation-harness
|
74 |
+
cd lm-evaluation-harness
|
75 |
+
pip install -e .
|
76 |
+
```
|
77 |
+
|
78 |
+
2. Evalaute:
|
79 |
+
```bash
|
80 |
+
MODEL=instruction-pretrain/InstructLM-1.3B
|
81 |
+
add_bos_token=True # this flag is needed because lm-eval-harness set add_bos_token to False by default, but ours require add_bos_token to be True
|
82 |
+
|
83 |
+
accelerate launch -m lm_eval --model hf \
|
84 |
+
--model_args pretrained=${MODEL},add_bos_token=${add_bos_token},dtype=float16 \
|
85 |
+
--gen_kwargs do_sample=False \
|
86 |
+
--tasks piqa,hellaswag,winogrande \
|
87 |
+
--batch_size auto \
|
88 |
+
--num_fewshot 0
|
89 |
+
|
90 |
+
accelerate launch -m lm_eval --model hf \
|
91 |
+
--model_args pretrained=${MODEL},add_bos_token=${add_bos_token},dtype=float16 \
|
92 |
+
--gen_kwargs do_sample=False \
|
93 |
+
--tasks social_iqa,ai2_arc,openbookqa,boolq,mmlu \
|
94 |
+
--batch_size auto \
|
95 |
+
--num_fewshot 5
|
96 |
+
```
|
97 |
+
|
98 |
+
## Citation
|
99 |
+
If you find our work helpful, please cite us:
|
100 |
+
|
101 |
+
[Instruction Pre-Training](https://huggingface.co/papers/2406.14491) (EMNLP 2024)
|
102 |
+
```bibtex
|
103 |
+
@article{cheng2024instruction,
|
104 |
+
title={Instruction Pre-Training: Language Models are Supervised Multitask Learners},
|
105 |
+
author={Cheng, Daixuan and Gu, Yuxian and Huang, Shaohan and Bi, Junyu and Huang, Minlie and Wei, Furu},
|
106 |
+
journal={arXiv preprint arXiv:2406.14491},
|
107 |
+
year={2024}
|
108 |
+
}
|
109 |
+
```
|
110 |
+
|
111 |
+
[Adapt LLM to Domains](https://huggingface.co/papers/2309.09530)(ICLR 2024)
|
112 |
+
```bibtex
|
113 |
+
@inproceedings{
|
114 |
+
cheng2024adapting,
|
115 |
+
title={Adapting Large Language Models via Reading Comprehension},
|
116 |
+
author={Daixuan Cheng and Shaohan Huang and Furu Wei},
|
117 |
+
booktitle={The Twelfth International Conference on Learning Representations},
|
118 |
+
year={2024},
|
119 |
+
url={https://openreview.net/forum?id=y886UXPEZ0}
|
120 |
+
}
|
121 |
+
```
|
122 |
+
|