{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f94cafefeb0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f94cafeff40>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f94cb004040>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f94cb0040d0>", "_build": "<function ActorCriticPolicy._build at 0x7f94cb004160>", "forward": "<function ActorCriticPolicy.forward at 0x7f94cb0041f0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f94cb004280>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f94cb004310>", "_predict": "<function ActorCriticPolicy._predict at 0x7f94cb0043a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f94cb004430>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f94cb0044c0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f94cb004550>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f94ceb24680>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1724802621142452957, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAFpUqj2uUYm6mCL9NVVSujDxiS+5S3EktQAAgD8AAIA/puWavSSKdj8u+cW91iKRvu7itLzA6DY9AAAAAAAAAAAzmTs+T8MMP/I+E74sjIa+065lPR3pab0AAAAAAAAAALCOub6iNjI/ggdHveNSnL4K+DG+Jc/1vAAAAAAAAAAAAOCVu49Gb7q71U+zJdrqLlNDiblKGLkzAACAPwAAgD96NQs+u0GMP6/HCz4dzoy+0uRpPk1MF74AAAAAAAAAAIDbgj2OUqK8Mq4oPTv1YrzlB808+HBjPAAAgD8AAIA/ZqsSvam5KLwbOAE7JI/xPEnjBD0AzcM9AACAPwAAgD+a78i8Kbh5uuhlT7PrnTWvWVS1OBO1tzMAAIA/AACAPw0enL2k3Es6ZTnlub5tc7Z70kM8sgMQOQAAAAAAAIA/ALbDvA+ZbLzDnt47KrGoPAK3zr0Whoc9AACAPwAAgD+NzQo+QQg3PvXo5L2KdKO+8SEVPWGYmTwAAAAAAAAAAE2pvb2qlBE+DQdaPppecr6L1ig9uSyXvQAAAAAAAAAAWgdGvjW7YD6QzU4+gghmvsiePr326c47AAAAAAAAAADFN6m+y7yzPkrxcj5xpW6+TfmavPSPGb0AAAAAAAAAAMDng71c4wq6UkBJu5xSZbao9aC5u/JmOgAAAAAAAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHB1wJC0F8qMAWyUTWUBjAF0lEdAnEo3dsSCe3V9lChoBkdAch6reqJdjWgHTXgBaAhHQJxOMbsF+ux1fZQoaAZHQHDQH7UG3WpoB009AWgIR0CcTkoFV1fWdX2UKGgGR0BvbRSaVlf7aAdN5gJoCEdAnE6w9RrJsHV9lChoBkdAbmcF9KEnLWgHTT0DaAhHQJxSm7f51vF1fZQoaAZHQGz/iIcinpBoB028AWgIR0CcUzGC7K7qdX2UKGgGR0BY0jy4FzMiaAdN6ANoCEdAnFWOVLSNO3V9lChoBkdAcbHkjX4CZGgHTWYCaAhHQJxWni5uqFR1fZQoaAZHQG4g8AR02cdoB01cAWgIR0CcV8JmNBGAdX2UKGgGR0ByHT0PH1e0aAdNWQFoCEdAnFm2C7K7qnV9lChoBkdAcCFapPykK2gHTY0BaAhHQJxdP+CK77N1fZQoaAZHQG41oJJGvwFoB00iAmgIR0CcXxttQ9A5dX2UKGgGR0BwLDnPmganaAdNQgFoCEdAnGD8+NcW03V9lChoBkdAcBPa7mMfimgHTZ4BaAhHQJxnG40/GER1fZQoaAZHQHI2iQo1DShoB01lAWgIR0CcfMbI91U3dX2UKGgGR0Bu27zXjENwaAdNYQJoCEdAnH0OuJUHZHV9lChoBkdAbTVEl3QlbGgHTUkBaAhHQJx9gQOFxn51fZQoaAZHQG7Ub8FY+0RoB02KAmgIR0CcfbrxRVIadX2UKGgGR0BtQcmY0EX+aAdNywNoCEdAnH7sBltj1HV9lChoBkdAcHhcM3IdVGgHTWwCaAhHQJyEEOnVG1B1fZQoaAZHQHAHnrt3OfNoB02eAWgIR0CchSmfoRqXdX2UKGgGR0ButDjR2KVIaAdNxgFoCEdAnIU1sLv1DnV9lChoBkdAbaD127nPmmgHTW4BaAhHQJyFUSmIj4Z1fZQoaAZHQHJSCYCyQgdoB01UAWgIR0CchmnV5KODdX2UKGgGR0ByYc0/GEPEaAdNEQJoCEdAnIdg0waisXV9lChoBkdAcmNiUgSvkmgHTT0BaAhHQJyI9Sk0rLB1fZQoaAZHQGCH6Kcd5ptoB03oA2gIR0CciWuNPxhEdX2UKGgGR0BwmJdE9dNWaAdNJwFoCEdAnIrcv7FbV3V9lChoBkdAcFTsjFAE+2gHTTQBaAhHQJyLM2eg+Ql1fZQoaAZHQG+toNNJvpBoB01qA2gIR0Cci23IdU83dX2UKGgGR0BwYyMYMvytaAdNSwFoCEdAnIu198Z1m3V9lChoBkdARvHW+XZ5A2gHTSMBaAhHQJyLxf7aZhN1fZQoaAZHQErCryUcGTtoB0voaAhHQJyNgWP91lp1fZQoaAZHQHCmV2aDwphoB02VAmgIR0CckxqmCROldX2UKGgGR0BwLWJtSAH3aAdNSgFoCEdAnJOaQvHtGHV9lChoBkdAcji1ejVQRGgHTRcBaAhHQJyWeLyc0+F1fZQoaAZHQG6a3VbzK9xoB01hAWgIR0CclrISDh99dX2UKGgGR0BvMOOwPiDNaAdNjwFoCEdAnJfVie/Ya3V9lChoBkdAb7OptJnQIGgHTXABaAhHQJyZR3s5XEJ1fZQoaAZHQHDTfTgEU0xoB01qAmgIR0CcmjPWQOnVdX2UKGgGR0BshUstkFwDaAdNMAFoCEdAnJpFwYLsr3V9lChoBkdAYejxsEaESWgHTegDaAhHQJybGa6STyJ1fZQoaAZHQG1+jNIK+i9oB000AWgIR0Ccm2X0Gu9wdX2UKGgGR0ByNWRW912aaAdN3AFoCEdAnJxyCWeHz3V9lChoBkdAcN71yvLX+WgHTU4BaAhHQJydKUliSaF1fZQoaAZHQG/1ZPl+3H9oB00iAWgIR0CcnZdl/YrbdX2UKGgGR0BxPQbyYoiLaAdNawFoCEdAnJ5wdwNsnHV9lChoBkdAa0WZH/cWTGgHTZQBaAhHQJyfXMhX8wZ1fZQoaAZHQEDL0UXYUWVoB0vjaAhHQJyhavPkaMt1fZQoaAZHQG/2Rj8UEgZoB01HAWgIR0Cco3hB7eEadX2UKGgGR0BL90zKs+3ZaAdL/mgIR0Ccp4O1v2oOdX2UKGgGR0Bwlv9VFQVLaAdNXgFoCEdAnKfNhZyMk3V9lChoBkdAcc/JU5uIh2gHTWUBaAhHQJyrOvaDf3x1fZQoaAZHQHKyhXGOuJVoB005AWgIR0CcvsWGATZhdX2UKGgGR0Bw3jOcDr7gaAdNbAFoCEdAnL8/PszEaXV9lChoBkdAcF7kEcKgI2gHTc8BaAhHQJy/kKmbb111fZQoaAZHQHAhINZvDP5oB02tAWgIR0CcwHS+xnnMdX2UKGgGR0BuoAcNpdrwaAdNwQFoCEdAnMCtI9TxXnV9lChoBkdAbJmFxGUfP2gHTbgBaAhHQJzA9F+d9Ul1fZQoaAZHQHERjhDPWx1oB00sAmgIR0CcwRhaC+URdX2UKGgGR0BuobS1E3KkaAdNZgFoCEdAnMHa4x1xKnV9lChoBkdAb3eR4hUzbmgHTZsBaAhHQJzCGrvLHMl1fZQoaAZHQHIhErXlKbtoB03zAWgIR0Ccw1dTYNAkdX2UKGgGR0ByKpeY2Kl6aAdNNAFoCEdAnMP4gA6uGXV9lChoBkdAb7eNpdrwfGgHTZYBaAhHQJzFf18LKFJ1fZQoaAZHQE6imkWRA8loB0vSaAhHQJzFxSl3yI51fZQoaAZHQHFAY7muDBdoB005AWgIR0CcxzZSNwR5dX2UKGgGR0ByRMRsdkrgaAdNPgFoCEdAnMe+QlruY3V9lChoBkdAZG6+eOGTLWgHTegDaAhHQJzI7bBXS0B1fZQoaAZHQHGtweV9nbtoB00UAWgIR0CcyiGlANXpdX2UKGgGR0AeR/XoTwlTaAdL72gIR0Ccyl48U21ldX2UKGgGR0BwyvBk7OmjaAdNTQFoCEdAnMx/qgRK6HV9lChoBkdAbwapBHCoCWgHTREBaAhHQJzNL/7zkIZ1fZQoaAZHQG5rB+OOsDJoB01jAWgIR0CczpSqEOAidX2UKGgGR0Bwu8BFNL13aAdNRQFoCEdAnM6lx0dRznV9lChoBkdAcBNKb8WKuWgHTWIBaAhHQJzPfqX4TK11fZQoaAZHQHKGUMCtA9poB01CAWgIR0Cc0BycCo0idX2UKGgGR0BtB7dHlOoHaAdNOwFoCEdAnNLAYk3S8nV9lChoBkdAbiVu+h4+r2gHTZ4BaAhHQJzS0HX2/SJ1fZQoaAZHQHKIG69TP0JoB01PAWgIR0Cc0s+s5n14dX2UKGgGR0ByvzjMmnfmaAdNIgFoCEdAnNOhArxy4nV9lChoBkdAb9Elnh86WGgHTTkBaAhHQJzVCy4Wk8B1fZQoaAZHQHBpg7YChexoB00bAWgIR0Cc1Tl+mWMTdX2UKGgGR0BwHAsqaw2VaAdNJgFoCEdAnNXZBgNPQHV9lChoBkdAbqTdoFmnO2gHTRoBaAhHQJzWKF23azx1fZQoaAZHQGyZFIEr5IpoB005AWgIR0Cc1+a1TisGdX2UKGgGR0BvCNFWn0kGaAdNHwFoCEdAnNilRtP56HV9lChoBkdAcm8XJ5mh/WgHTSkBaAhHQJzaauQp4KR1fZQoaAZHQHAfxGpda+xoB01dAWgIR0Cc24/xUedTdX2UKGgGR0Bw4MwudwvQaAdNNAFoCEdAnNw+/k/8mHV9lChoBkdAbYJbJwKjSGgHTT4BaAhHQJzfPFR51Nh1fZQoaAZHQG7Vx2bG3nZoB01FAWgIR0Cc35KYAsCldX2UKGgGR0Bv69mjCYTkaAdNNwFoCEdAnN/RIWgvlHV9lChoBkdAchN2vB7/oGgHTVYBaAhHQJzgTG0eEIx1fZQoaAZHQGu+jebd8AtoB008AWgIR0Cc4WzbeuV5dX2UKGgGR0Bta34dp7C0aAdNzwFoCEdAnOLI6GQCCHV9lChoBkdAcAoAh0QsgGgHTW4BaAhHQJzkvWDpTuR1fZQoaAZHQHEPF89fTkRoB02UAWgIR0Cc5XtxdY4idX2UKGgGR0BtvMxXXAdoaAdNRAFoCEdAnOXGza9K3HV9lChoBkdAbp7MWXTmXGgHTaMBaAhHQJznKbtqpLp1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 252, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.4.0+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |