--- library_name: transformers base_model: aubmindlab/bert-base-arabertv02-twitter tags: - generated_from_trainer metrics: - accuracy model-index: - name: Model4_withclasess-arabertv2_base_T2_WS_A100v2_F1__BL results: [] --- [Visualize in Weights & Biases](https://wandb.ai/so/Model4-with-add-clasess-T1-ArabertTv2-Bas-WS-A100-BL/runs/o8owefo8) [Visualize in Weights & Biases](https://wandb.ai/so/Model4-with-add-clasess-T1-ArabertTv2-Bas-WS-A100-BL/runs/o8owefo8) # Model4_withclasess-arabertv2_base_T2_WS_A100v2_F1__BL This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02-twitter](https://huggingface.co/aubmindlab/bert-base-arabertv02-twitter) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0770 - F1-micro: 0.8282 - Roc Auc: 0.9072 - Accuracy: 0.7912 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1-micro | Roc Auc | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------:|:--------:| | 0.1028 | 1.0 | 507 | 0.0644 | 0.7904 | 0.8639 | 0.7297 | | 0.0476 | 2.0 | 1014 | 0.0556 | 0.8143 | 0.8828 | 0.7668 | | 0.0308 | 3.0 | 1521 | 0.0570 | 0.8200 | 0.8929 | 0.7758 | | 0.0206 | 4.0 | 2028 | 0.0624 | 0.8179 | 0.8979 | 0.7828 | | 0.0134 | 5.0 | 2535 | 0.0696 | 0.8183 | 0.9016 | 0.7856 | | 0.0097 | 6.0 | 3042 | 0.0743 | 0.8226 | 0.9052 | 0.7898 | | 0.0077 | 7.0 | 3549 | 0.0779 | 0.8166 | 0.9039 | 0.7793 | | 0.0054 | 8.0 | 4056 | 0.0809 | 0.8249 | 0.9063 | 0.7905 | | 0.0045 | 9.0 | 4563 | 0.0770 | 0.8282 | 0.9072 | 0.7912 | | 0.0036 | 10.0 | 5070 | 0.0812 | 0.8228 | 0.9049 | 0.7849 | | 0.003 | 11.0 | 5577 | 0.0874 | 0.8250 | 0.9072 | 0.7919 | | 0.0025 | 12.0 | 6084 | 0.0886 | 0.8258 | 0.9067 | 0.7863 | ### Framework versions - Transformers 4.48.2 - Pytorch 2.5.1+cu124 - Tokenizers 0.21.0