Update README.md
Browse files
README.md
CHANGED
@@ -1,6 +1,144 @@
|
|
1 |
-
---
|
2 |
-
license: other
|
3 |
-
license_name: sla0044
|
4 |
-
license_link: >-
|
5 |
-
https://github.com/STMicroelectronics/stm32aimodelzoo/object_detection/st_ssd_mobilenet_v1/ST_pretrainedmodel_public_dataset/LICENSE.md
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: other
|
3 |
+
license_name: sla0044
|
4 |
+
license_link: >-
|
5 |
+
https://github.com/STMicroelectronics/stm32aimodelzoo/object_detection/st_ssd_mobilenet_v1/ST_pretrainedmodel_public_dataset/LICENSE.md
|
6 |
+
pipeline_tag: object-detection
|
7 |
+
---
|
8 |
+
# SSD MobileNet v1 quantized
|
9 |
+
|
10 |
+
## **Use case** : `Object detection`
|
11 |
+
|
12 |
+
# Model description
|
13 |
+
|
14 |
+
|
15 |
+
The mobilenet-ssd model is a Single-Shot multibox Detection (SSD) network intended to perform object detection.
|
16 |
+
Mobilenet-ssd is using MobileNet as a backbone which is a general architecture that can be used for multiple use cases.
|
17 |
+
Depending on the use case, it can use different input layer size and
|
18 |
+
different width factors. This allows different width models to reduce
|
19 |
+
the number of multiply-adds and thereby reduce inference cost on mobile devices.
|
20 |
+
|
21 |
+
The model is quantized in int8 using tensorflow lite converter.
|
22 |
+
|
23 |
+
## Network information
|
24 |
+
|
25 |
+
|
26 |
+
| Network information | Value |
|
27 |
+
|-------------------------|-----------------|
|
28 |
+
| Framework | TensorFlow Lite |
|
29 |
+
| Quantization | int8 |
|
30 |
+
| Provenance | https://www.tensorflow.org/api_docs/python/tf/keras/applications/mobilenet |
|
31 |
+
| Paper | https://arxiv.org/abs/1704.04861, https://arxiv.org/abs/1512.02325 |
|
32 |
+
|
33 |
+
The models are quantized using tensorflow lite converter.
|
34 |
+
|
35 |
+
|
36 |
+
## Network inputs / outputs
|
37 |
+
|
38 |
+
|
39 |
+
For an image resolution of NxM and NC classes
|
40 |
+
|
41 |
+
| Input Shape | Description |
|
42 |
+
| ----- | ----------- |
|
43 |
+
| (1, N, M, 3) | Single NxM RGB image with UINT8 values between 0 and 255 |
|
44 |
+
|
45 |
+
| Output Shape | Description |
|
46 |
+
| ----- | ----------- |
|
47 |
+
| (1, NA, 8 + NC) | FLOAT values Where NA is thge number of anchors and NC is the number of classes|
|
48 |
+
|
49 |
+
|
50 |
+
## Recommended Platforms
|
51 |
+
|
52 |
+
|
53 |
+
| Platform | Supported | Recommended |
|
54 |
+
|----------|-----------|-------------|
|
55 |
+
| STM32L0 | [] | [] |
|
56 |
+
| STM32L4 | [] | [] |
|
57 |
+
| STM32U5 | [] | [] |
|
58 |
+
| STM32H7 | [x] | [x] |
|
59 |
+
| STM32MP1 | [x] | [x] |
|
60 |
+
| STM32MP2 | [x] | [x] |
|
61 |
+
| STM32N6 | [x] | [x] |
|
62 |
+
|
63 |
+
# Performances
|
64 |
+
|
65 |
+
## Metrics
|
66 |
+
|
67 |
+
Measures are done with default STM32Cube.AI configuration with enabled input / output allocated option.
|
68 |
+
### Reference **NPU** memory footprint based on COCO Person dataset (see Accuracy for details on dataset)
|
69 |
+
|Model | Dataset | Format | Resolution | Series | Internal RAM | External RAM | Weights Flash | STM32Cube.AI version | STEdgeAI Core version |
|
70 |
+
|----------|------------------|--------|-------------|------------------|------------------|---------------------|-------|----------------------|-------------------------|
|
71 |
+
|[ST SSD Mobilenet v1 0.25](https://github.com/STMicroelectronics/stm32ai-modelzoo/object_detection/st_ssd_mobilenet_v1/ST_pretrainedmodel_public_dataset/coco_2017_person/st_ssd_mobilenet_v1_025_224/st_ssd_mobilenet_v1_025_224_int8.tflite) | COCO-Person | Int8 | 224x224x3 | STM32N6 | 694.64 | 0.0 | 827.16 | 10.0.0 | 2.0.0 |
|
72 |
+
| [ST SSD Mobilenet v1 0.25](https://github.com/STMicroelectronics/stm32ai-modelzoo/object_detection/st_ssd_mobilenet_v1/ST_pretrainedmodel_public_dataset/coco_2017_person/st_ssd_mobilenet_v1_025_256/st_ssd_mobilenet_v1_025_256_int8.tflite) | COCO-Person | Int8 | 256x256x3 | STM32N6 | 1002.64 | 0.0 | 826.91 | 10.0.0 | 2.0.0 |
|
73 |
+
|
74 |
+
|
75 |
+
### Reference **NPU** inference time based on COCO Person dataset (see Accuracy for details on dataset)
|
76 |
+
| Model | Dataset | Format | Resolution | Board | Execution Engine | Inference time (ms) | Inf / sec | STM32Cube.AI version | STEdgeAI Core version |
|
77 |
+
|--------|------------------|--------|-------------|------------------|------------------|---------------------|-------|----------------------|-------------------------|
|
78 |
+
| [ST SSD Mobilenet v1 0.25](https://github.com/STMicroelectronics/stm32ai-modelzoo/object_detection/st_ssd_mobilenet_v1/ST_pretrainedmodel_public_dataset/coco_2017_person/st_ssd_mobilenet_v1_025_224/st_ssd_mobilenet_v1_025_224_int8.tflite) | COCO-Person | Int8 | 224x224x3 | STM32N6570-DK | NPU/MCU | 9.63 | 103.84 | 10.0.0 | 2.0.0 |
|
79 |
+
| [ST SSD Mobilenet v1 0.25](https://github.com/STMicroelectronics/stm32ai-modelzoo/object_detection/st_ssd_mobilenet_v1/ST_pretrainedmodel_public_dataset/coco_2017_person/st_ssd_mobilenet_v1_025_256/st_ssd_mobilenet_v1_025_256_int8.tflite) | COCO-Person | Int8 | 256x256x3 | STM32N6570-DK | NPU/MCU | 10.37 | 96.43 | 10.0.0 | 2.0.0 |
|
80 |
+
|
81 |
+
|
82 |
+
### Reference MCU memory footprint based on COCO Person dataset (see Accuracy for details on dataset)
|
83 |
+
| Model | Format | Resolution | Series | Activation RAM | Runtime RAM | Weights Flash | Code Flash | Total RAM | Total Flash | STM32Cube.AI version |
|
84 |
+
|-------------------|--------|------------|---------|----------------|-------------|---------------|------------|-------------|-------------|-----------------------|
|
85 |
+
| [ST SSD Mobilenet v1 0.25](https://github.com/STMicroelectronics/stm32ai-modelzoo/object_detection/st_ssd_mobilenet_v1/ST_pretrainedmodel_public_dataset/coco_2017_person/st_ssd_mobilenet_v1_025_192/st_ssd_mobilenet_v1_025_192_int8.tflite) | Int8 | 192x192x3 | STM32H7 | 266.3 | 29.93 | 483.16 | 95.39 | 296.23 | 578.55 | 10.0.0 | |
|
86 |
+
| [ST SSD Mobilenet v1 0.25](https://github.com/STMicroelectronics/stm32ai-modelzoo/object_detection/st_ssd_mobilenet_v1/ST_pretrainedmodel_public_dataset/coco_2017_person/st_ssd_mobilenet_v1_025_224/st_ssd_mobilenet_v1_025_224_int8.tflite) | Int8 | 224x224x3 | STM32H7 | 379.6 | 34.34 | 675.64 | 106.01 | 413.94 | 781.65 | 10.0.0 | |
|
87 |
+
| [ST SSD Mobilenet v1 0.25](https://github.com/STMicroelectronics/stm32ai-modelzoo/object_detection/st_ssd_mobilenet_v1/ST_pretrainedmodel_public_dataset/coco_2017_person/st_ssd_mobilenet_v1_025_256/st_ssd_mobilenet_v1_025_256_int8.tflite) | Int8 | 256x256x3 | STM32H7 | 456.1 KiB | 33.75 | 675.64 | 105.26| 489.85 | 780.9 | 10.0.0 |
|
88 |
+
|
89 |
+
|
90 |
+
### Reference **MCU** inference time based on COCO Person dataset (see Accuracy for details on dataset)
|
91 |
+
|
92 |
+
|
93 |
+
| Model | Format | Resolution | Board | Execution Engine | Frequency | Inference time (ms) | STM32Cube.AI version |
|
94 |
+
|-------------------|--------|------------|------------------|------------------|-------------|---------------------|-----------------------|
|
95 |
+
| [ST SSD Mobilenet v1 0.25](https://github.com/STMicroelectronics/stm32ai-modelzoo/object_detection/st_ssd_mobilenet_v1/ST_pretrainedmodel_public_dataset/coco_2017_person/st_ssd_mobilenet_v1_025_192/st_ssd_mobilenet_v1_025_192_int8.tflite) | Int8 | 192x192x3 | STM32H747I-DISCO | 1 CPU | 400 MHz | 149.18 ms | 10.0.0 |
|
96 |
+
| [ST SSD Mobilenet v1 0.25](https://github.com/STMicroelectronics/stm32ai-modelzoo/object_detection/st_ssd_mobilenet_v1/ST_pretrainedmodel_public_dataset/coco_2017_person/st_ssd_mobilenet_v1_025_224/st_ssd_mobilenet_v1_025_224_int8.tflite) | Int8 | 224x224x3 | STM32H747I-DISCO | 1 CPU | 400 MHz | 218.99 ms | 10.0.0 |
|
97 |
+
| [ST SSD Mobilenet v1 0.25](https://github.com/STMicroelectronics/stm32ai-modelzoo/object_detection/st_ssd_mobilenet_v1/ST_pretrainedmodel_public_dataset/coco_2017_person/st_ssd_mobilenet_v1_025_256/st_ssd_mobilenet_v1_025_256_int8.tflite) | Int8 | 256x256x3 | STM32H747I-DISCO | 1 CPU | 400 MHz | 267.18 ms | 10.0.0 |
|
98 |
+
|
99 |
+
|
100 |
+
### Reference **MPU** inference time based on COCO Person dataset (see Accuracy for details on dataset)
|
101 |
+
|
102 |
+
| Model | Format | Resolution | Quantization | Board | Execution Engine | Frequency | Inference time (ms) | %NPU | %GPU | %CPU | X-LINUX-AI version | Framework |
|
103 |
+
|----------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------|---------------|-------------------|------------------|-----------|---------------------|-------|-------|------|--------------------|-----------------------|
|
104 |
+
| [ST SSD Mobilenet v1 0.25](https://github.com/STMicroelectronics/stm32ai-modelzoo/object_detection/st_ssd_mobilenet_v1/ST_pretrainedmodel_public_dataset/coco_2017_person/st_ssd_mobilenet_v1_025_192/st_ssd_mobilenet_v1_025_192_int8.tflite) | Int8 | 192x192x3 | per-channel** | STM32MP257F-DK2 | NPU/GPU | 800 MHz | 12.34 ms | 15.35 | 84.65 |0 | v5.1.0 | OpenVX |
|
105 |
+
| [ST SSD Mobilenet v1 0.25](https://github.com/STMicroelectronics/stm32ai-modelzoo/object_detection/st_ssd_mobilenet_v1/ST_pretrainedmodel_public_dataset/coco_2017_person/st_ssd_mobilenet_v1_025_224/st_ssd_mobilenet_v1_025_224_int8.tflite) | Int8 | 224x224x3 | per-channel** | STM32MP257F-DK2 | NPU/GPU | 800 MHz | 18.65 ms | 14.02 | 85.98 |0 | v5.1.0 | OpenVX |
|
106 |
+
| [ST SSD Mobilenet v1 0.25](https://github.com/STMicroelectronics/stm32ai-modelzoo/object_detection/st_ssd_mobilenet_v1/ST_pretrainedmodel_public_dataset/coco_2017_person/st_ssd_mobilenet_v1_025_256/st_ssd_mobilenet_v1_025_256_int8.tflite) | Int8 | 256x256x3 | per-channel** | STM32MP257F-DK2 | NPU/GPU | 800 MHz | 14.33 ms | 14.12 | 85.88 |0 | v5.1.0 | OpenVX |
|
107 |
+
| [ST SSD Mobilenet v1 0.25](https://github.com/STMicroelectronics/stm32ai-modelzoo/object_detection/st_ssd_mobilenet_v1/ST_pretrainedmodel_public_dataset/coco_2017_person/st_ssd_mobilenet_v1_025_192/st_ssd_mobilenet_v1_025_192_int8.tflite) | Int8 | 192x192x3 | per-channel | STM32MP157F-DK2 | 2 CPU | 800 MHz | 67.80 ms | NA | NA |100 | v5.1.0 | TensorFlowLite 2.11.0 |
|
108 |
+
| [ST SSD Mobilenet v1 0.25](https://github.com/STMicroelectronics/stm32ai-modelzoo/object_detection/st_ssd_mobilenet_v1/ST_pretrainedmodel_public_dataset/coco_2017_person/st_ssd_mobilenet_v1_025_224/st_ssd_mobilenet_v1_025_224_int8.tflite) | Int8 | 224x224x3 | per-channel | STM32MP157F-DK2 | 2 CPU | 800 MHz | 100.20 ms | NA | NA |100 | v5.1.0 | TensorFlowLite 2.11.0 |
|
109 |
+
| [ST SSD Mobilenet v1 0.25](https://github.com/STMicroelectronics/stm32ai-modelzoo/object_detection/st_ssd_mobilenet_v1/ST_pretrainedmodel_public_dataset/coco_2017_person/st_ssd_mobilenet_v1_025_256/st_ssd_mobilenet_v1_025_256_int8.tflite) | Int8 | 256x256x3 | per-channel | STM32MP157F-DK2 | 2 CPU | 800 MHz | 119.00 ms | NA | NA |100 | v5.1.0 | TensorFlowLite 2.11.0 |
|
110 |
+
| [ST SSD Mobilenet v1 0.25](https://github.com/STMicroelectronics/stm32ai-modelzoo/object_detection/st_ssd_mobilenet_v1/ST_pretrainedmodel_public_dataset/coco_2017_person/st_ssd_mobilenet_v1_025_192/st_ssd_mobilenet_v1_025_192_int8.tflite) | Int8 | 192x192x3 | per-channel | STM32MP135F-DK2 | 1 CPU | 1000 MHz | 95.36 ms | NA | NA |100 | v5.1.0 | TensorFlowLite 2.11.0 |
|
111 |
+
| [ST SSD Mobilenet v1 0.25](https://github.com/STMicroelectronics/stm32ai-modelzoo/object_detection/st_ssd_mobilenet_v1/ST_pretrainedmodel_public_dataset/coco_2017_person/st_ssd_mobilenet_v1_025_224/st_ssd_mobilenet_v1_025_224_int8.tflite) | Int8 | 224x224x3 | per-channel | STM32MP135F-DK2 | 1 CPU | 1000 MHz | 139.00 ms | NA | NA |100 | v5.1.0 | TensorFlowLite 2.11.0 |
|
112 |
+
| [ST SSD Mobilenet v1 0.25](https://github.com/STMicroelectronics/stm32ai-modelzoo/object_detection/st_ssd_mobilenet_v1/ST_pretrainedmodel_public_dataset/coco_2017_person/st_ssd_mobilenet_v1_025_256/st_ssd_mobilenet_v1_025_256_int8.tflite) | Int8 | 256x256x3 | per-channel | STM32MP135F-DK2 | 1 CPU | 1000 MHz | 168.80 ms | NA | NA |100 | v5.1.0 | TensorFlowLite 2.11.0 |
|
113 |
+
|
114 |
+
** **To get the most out of MP25 NPU hardware acceleration, please use per-tensor quantization**
|
115 |
+
|
116 |
+
### AP on COCO Person dataset
|
117 |
+
|
118 |
+
|
119 |
+
Dataset details: [link](https://cocodataset.org/#download) , License [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/legalcode) , Quotation[[1]](#1) , Number of classes: 80, Number of images: 118,287
|
120 |
+
|
121 |
+
| Model | Format | Resolution | AP* |
|
122 |
+
|-------|--------|------------|----------------|
|
123 |
+
| [ST SSD Mobilenet v1 0.25](https://github.com/STMicroelectronics/stm32ai-modelzoo/object_detection/st_ssd_mobilenet_v1/ST_pretrainedmodel_public_dataset/coco_2017_person/st_ssd_mobilenet_v1_025_192/st_ssd_mobilenet_v1_025_192_int8.tflite) | Int8 | 192x192x3 | 35.80 % |
|
124 |
+
| [ST SSD Mobilenet v1 0.25](https://github.com/STMicroelectronics/stm32ai-modelzoo/object_detection/st_ssd_mobilenet_v1/ST_pretrainedmodel_public_dataset/coco_2017_person/st_ssd_mobilenet_v1_025_192/st_ssd_mobilenet_v1_025_192.h5) | Float | 192x192x3 | 35.80 % |
|
125 |
+
| [ST SSD Mobilenet v1 0.25](https://github.com/STMicroelectronics/stm32ai-modelzoo/object_detection/st_ssd_mobilenet_v1/ST_pretrainedmodel_public_dataset/coco_2017_person/st_ssd_mobilenet_v1_025_224/st_ssd_mobilenet_v1_025_224_int8.tflite) | Int8 | 224x224x3 | 46.10 % |
|
126 |
+
| [ST SSD Mobilenet v1 0.25](https://github.com/STMicroelectronics/stm32ai-modelzoo/object_detection/st_ssd_mobilenet_v1/ST_pretrainedmodel_public_dataset/coco_2017_person/st_ssd_mobilenet_v1_025_224/st_ssd_mobilenet_v1_025_224.h5) | Float | 224x224x3 | 46.90 % |
|
127 |
+
| [ST SSD Mobilenet v1 0.25](https://github.com/STMicroelectronics/stm32ai-modelzoo/object_detection/st_ssd_mobilenet_v1/ST_pretrainedmodel_public_dataset/coco_2017_person/st_ssd_mobilenet_v1_025_256/st_ssd_mobilenet_v1_025_256_int8.tflite) | Int8 | 256x256x3 | 50.50 % |
|
128 |
+
| [ST SSD Mobilenet v1 0.25](https://github.com/STMicroelectronics/stm32ai-modelzoo/object_detection/st_ssd_mobilenet_v1/ST_pretrainedmodel_public_dataset/coco_2017_person/st_ssd_mobilenet_v1_025_256/st_ssd_mobilenet_v1_025_256.h5) | Float | 256x256x3 | 51 % |
|
129 |
+
|
130 |
+
\* EVAL_IOU = 0.4, NMS_THRESH = 0.5, SCORE_THRESH =0.001
|
131 |
+
|
132 |
+
|
133 |
+
## Retraining and Integration in a simple example:
|
134 |
+
|
135 |
+
Please refer to the stm32ai-modelzoo-services GitHub [here](https://github.com/STMicroelectronics/stm32ai-modelzoo-services)
|
136 |
+
|
137 |
+
|
138 |
+
|
139 |
+
# References
|
140 |
+
|
141 |
+
|
142 |
+
<a id="1">[1]</a>
|
143 |
+
Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P. and Zitnick, C.L., 2014. "Microsoft coco: Common objects in context". In Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13 (pp. 740-755). Springer International Publishing. [Online]. Available: https://cocodataset.org/#download.
|
144 |
+
|