Upload push-model.py with huggingface_hub
Browse files- push-model.py +169 -0
push-model.py
ADDED
|
@@ -0,0 +1,169 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from typing import Optional
|
| 3 |
+
|
| 4 |
+
from huggingface_hub import HfApi, create_repo
|
| 5 |
+
from transformers import AutoConfig, AutoModelForCausalLM, AutoProcessor
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
class SpecVisionModelRegistration:
|
| 9 |
+
"""
|
| 10 |
+
Handles the registration and pushing of SpecVision model to Hugging Face Hub.
|
| 11 |
+
"""
|
| 12 |
+
|
| 13 |
+
def __init__(self,
|
| 14 |
+
model_path: str,
|
| 15 |
+
repo_name: str,
|
| 16 |
+
organization: Optional[str] = None,
|
| 17 |
+
token: Optional[str] = None):
|
| 18 |
+
"""
|
| 19 |
+
Initialize the registration handler.
|
| 20 |
+
|
| 21 |
+
Args:
|
| 22 |
+
model_path: Local path to your model files
|
| 23 |
+
repo_name: Name for the Hugging Face repository
|
| 24 |
+
organization: Optional organization name on Hugging Face
|
| 25 |
+
token: Hugging Face API token
|
| 26 |
+
"""
|
| 27 |
+
self.model_path = model_path
|
| 28 |
+
self.repo_name = repo_name
|
| 29 |
+
self.organization = organization
|
| 30 |
+
self.token = token or os.getenv("HF_TOKEN")
|
| 31 |
+
|
| 32 |
+
if not self.token:
|
| 33 |
+
raise ValueError("Please provide a Hugging Face token either directly or via HF_TOKEN environment variable")
|
| 34 |
+
|
| 35 |
+
self.api = HfApi()
|
| 36 |
+
|
| 37 |
+
def register_model_components(self):
|
| 38 |
+
"""
|
| 39 |
+
Register the SpecVision model architecture components with the transformers library.
|
| 40 |
+
"""
|
| 41 |
+
# Import your custom model classes
|
| 42 |
+
from configuration_spec_vision import SpecVisionConfig
|
| 43 |
+
from modeling_spec_vision import SpecVisionForCausalLM
|
| 44 |
+
from processing_spec_vision import SpecVisionProcessor
|
| 45 |
+
|
| 46 |
+
# Register the model architecture
|
| 47 |
+
AutoConfig.register("spec_vision", SpecVisionConfig)
|
| 48 |
+
AutoModelForCausalLM.register(SpecVisionConfig, SpecVisionForCausalLM)
|
| 49 |
+
AutoProcessor.register(SpecVisionConfig, SpecVisionProcessor)
|
| 50 |
+
|
| 51 |
+
print("✓ Successfully registered SpecVision model architecture")
|
| 52 |
+
|
| 53 |
+
def create_huggingface_repo(self):
|
| 54 |
+
"""
|
| 55 |
+
Create a new repository on the Hugging Face Hub.
|
| 56 |
+
"""
|
| 57 |
+
repo_id = f"{self.organization}/{self.repo_name}" if self.organization else self.repo_name
|
| 58 |
+
|
| 59 |
+
try:
|
| 60 |
+
create_repo(
|
| 61 |
+
repo_id,
|
| 62 |
+
token=self.token,
|
| 63 |
+
private=False,
|
| 64 |
+
exist_ok=True
|
| 65 |
+
)
|
| 66 |
+
print(f"✓ Created/accessed repository: {repo_id}")
|
| 67 |
+
return repo_id
|
| 68 |
+
except Exception as e:
|
| 69 |
+
raise Exception(f"Failed to create repository: {str(e)}")
|
| 70 |
+
|
| 71 |
+
def update_model_card(self):
|
| 72 |
+
"""
|
| 73 |
+
Create or update the model card (README.md) with necessary information.
|
| 74 |
+
"""
|
| 75 |
+
model_card = f"""---
|
| 76 |
+
language: en
|
| 77 |
+
tags:
|
| 78 |
+
- spec-vision
|
| 79 |
+
- vision-language-model
|
| 80 |
+
- transformers
|
| 81 |
+
license: apache-2.0
|
| 82 |
+
---
|
| 83 |
+
|
| 84 |
+
# SpecVision Model
|
| 85 |
+
|
| 86 |
+
This is the SpecVision model, a vision-language model based on the transformers architecture.
|
| 87 |
+
|
| 88 |
+
## Model Description
|
| 89 |
+
|
| 90 |
+
SpecVision is designed for vision-language tasks, combining visual and textual understanding capabilities.
|
| 91 |
+
|
| 92 |
+
## Usage
|
| 93 |
+
|
| 94 |
+
```python
|
| 95 |
+
from transformers import AutoConfig, AutoModelForCausalLM, AutoProcessor
|
| 96 |
+
|
| 97 |
+
# Load the model and processor
|
| 98 |
+
model = AutoModelForCausalLM.from_pretrained("{self.repo_name}")
|
| 99 |
+
processor = AutoProcessor.from_pretrained("{self.repo_name}")
|
| 100 |
+
|
| 101 |
+
# Process inputs
|
| 102 |
+
inputs = processor(images=image, text=text, return_tensors="pt")
|
| 103 |
+
outputs = model(**inputs)
|
| 104 |
+
```
|
| 105 |
+
|
| 106 |
+
## Training and Evaluation
|
| 107 |
+
|
| 108 |
+
[Add your training and evaluation details here]
|
| 109 |
+
|
| 110 |
+
## Limitations and Biases
|
| 111 |
+
|
| 112 |
+
[Add any known limitations and biases here]
|
| 113 |
+
"""
|
| 114 |
+
|
| 115 |
+
with open(os.path.join(self.model_path, "README.md"), "w") as f:
|
| 116 |
+
f.write(model_card)
|
| 117 |
+
|
| 118 |
+
print("✓ Created/updated model card")
|
| 119 |
+
|
| 120 |
+
def push_to_hub(self):
|
| 121 |
+
"""
|
| 122 |
+
Push the model, configurations, and related files to Hugging Face Hub.
|
| 123 |
+
"""
|
| 124 |
+
repo_id = self.create_huggingface_repo()
|
| 125 |
+
|
| 126 |
+
# Update the model card first
|
| 127 |
+
self.update_model_card()
|
| 128 |
+
|
| 129 |
+
# Create a dictionary of files to upload
|
| 130 |
+
files_to_upload = {}
|
| 131 |
+
for filename in os.listdir(self.model_path):
|
| 132 |
+
if filename.endswith(('.json', '.py', '.md', '.txt', '.safetensors')):
|
| 133 |
+
filepath = os.path.join(self.model_path, filename)
|
| 134 |
+
files_to_upload[filename] = filepath
|
| 135 |
+
|
| 136 |
+
# Upload all files
|
| 137 |
+
for filename, filepath in files_to_upload.items():
|
| 138 |
+
self.api.upload_file(
|
| 139 |
+
path_or_fileobj=filepath,
|
| 140 |
+
path_in_repo=filename,
|
| 141 |
+
repo_id=repo_id,
|
| 142 |
+
token=self.token
|
| 143 |
+
)
|
| 144 |
+
print(f"✓ Uploaded {filename}")
|
| 145 |
+
|
| 146 |
+
print(f"\nModel successfully pushed to https://huggingface.co/{repo_id}")
|
| 147 |
+
|
| 148 |
+
def main():
|
| 149 |
+
"""
|
| 150 |
+
Main function to execute the registration and push process.
|
| 151 |
+
"""
|
| 152 |
+
# You can set your HF_TOKEN as an environment variable or pass it directly
|
| 153 |
+
TOKEN = os.getenv("HF_TOKEN") # or "your_token_here"
|
| 154 |
+
|
| 155 |
+
registration = SpecVisionModelRegistration(
|
| 156 |
+
model_path="./", # Assuming you're running from the model directory
|
| 157 |
+
repo_name="Spec-4B-Vision-V1", # Change this to your desired repo name
|
| 158 |
+
organization="SVECTOR-CORPORATION", # Your organization name
|
| 159 |
+
token=TOKEN
|
| 160 |
+
)
|
| 161 |
+
|
| 162 |
+
# Register the model architecture
|
| 163 |
+
registration.register_model_components()
|
| 164 |
+
|
| 165 |
+
# Push everything to the Hub
|
| 166 |
+
registration.push_to_hub()
|
| 167 |
+
|
| 168 |
+
if __name__ == "__main__":
|
| 169 |
+
main()
|