Saidakmal commited on
Commit
9653f60
·
verified ·
1 Parent(s): 6135385

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
2_Dense/config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "in_features": 768,
3
+ "out_features": 3072,
4
+ "bias": false,
5
+ "activation_function": "torch.nn.modules.linear.Identity"
6
+ }
2_Dense/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3d143e915f7ff4faa19d367dbede510fcb161483d7244aec126046e3c02b05a3
3
+ size 9437272
3_Dense/config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "in_features": 3072,
3
+ "out_features": 768,
4
+ "bias": false,
5
+ "activation_function": "torch.nn.modules.linear.Identity"
6
+ }
3_Dense/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5f2585c584ce3213d60b7e5da74943010e96ef2e912e137b3c0e64a55c25544f
3
+ size 9437272
README.md CHANGED
@@ -1,8 +1,576 @@
1
  ---
2
- datasets:
3
- - sentence-transformers/natural-questions
4
- language:
5
- - uz
6
- base_model:
7
- - google/embeddinggemma-300m
8
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - dense
7
+ - generated_from_trainer
8
+ - dataset_size:18000
9
+ - loss:MultipleNegativesRankingLoss
10
+ widget:
11
+ - source_sentence: kimning xoʻjayini boʻlgan
12
+ sentences:
13
+ - 'Salingerning 2010 yilda vafot etganidan so''ng, Salingerning agent bo''lgan Phyllis
14
+ Westberg, uning asarlariga film, televideniye yoki sahna huquqlarini litsenziyalash
15
+ bo''yicha hech narsa o''zgarmaganini aytdi. [1] Salinger tomonidan 1957 yilda
16
+ yozilgan xatda u o''limidan keyin chiqarilgan "The Catcher in the Rye" kitobining
17
+ adaptiyasiga ochiqligi ayon bo''lgan. U shunday yozgan: "Birinchidan, huquqlar
18
+ bir kun sotilishi mumkin. Men boy o''lmasim ehtimoli mavjud bo''lgani uchun, men
19
+ sotilmagan huquqlarni xotinim va qizimga sug''urta siyosati sifatida qoldirish
20
+ g''oyasi bilan juda jiddiy o''ynayman. Bu menga hech qanday oxirat bermaydi, ammo,
21
+ tezda qo''shishim mumkin, Holdenfield muomalasi natijalarini ko''rishim shart
22
+ emasligini bilish. Salinger shuningdek, uning hikoyasini filmga tayyorlash uchun
23
+ mos kelmasligiga ishondi va bu roman va so''zning birinchi tarjimasi dialogga
24
+ aylanishi kerak deb yozgan.'
25
+ - Dragon Soul "Dragon Soul" - Yaponiyalik qo'shiqchi Takayoshi Tanimotoning yettinchi
26
+ singli. U qo'shiqni gitarist va qo'shiqchi Takafumi Iwasaki bilan birga "Dragon
27
+ Soul" deb nomlangan maxsus birlikning bir qismi sifatida ijro etdi. 2009 yil 20
28
+ may kuni CD-da muntazam va cheklangan nashr sifatida chiqarildi; cheklangan nashrda
29
+ Dragon Ball Kai Dragon Battlers savdo kartalari kartalari o'yinchasi mavjud edi.
30
+ - The Hateful Eight (Ko'pincha H8ful Eight deb marketing qilinadi) Quentin Tarantino
31
+ tomonidan yozib va yozib olingan 2015 yilgi amerikalik g'arbiy film. U Samyuel
32
+ L. Jekson, Kurt Rasel, Jenifer Jeyson Leigh, Walton Goggins, Demian Bichir, Tim
33
+ Roth, Maykl Madsen va Brus Dernni Amerikaning Fuqarolik urushidan keyin bir vaqtlar
34
+ cho'pon to'xtashida qor bo'ronidan panoh izlayotgan sakkiz begona kishi sifatida
35
+ tasvirlaydi.
36
+ - source_sentence: Kevin o'yinchi bo'lib, yosh va beqaror bo'lib, sho'zni tark etadi.
37
+ sentences:
38
+ - Nullifikatsiya (AQSh Konstitutsiyasi) Nullifikatsiya nazariyasi, davlatlar o'rtasida
39
+ bitim (yoki "kompakt") asosida Ittifoqni tuzgan va federal hukumatning yaratuvchilari
40
+ sifatida davlatlar ushbu hukumatning hokimiyatining chegaralarini belgilash uchun
41
+ yakuniy vakolatga ega. Bu asosida, federal hukumatning hokimiyatining chegarasini
42
+ aniqlovchi yakuniy nazariyasi bo'yicha, davlatlar federal sudlar emas, balki federal
43
+ hukumatning hokimiyatining eng oxirgi ta'rifchisi hisoblanadi. Ushbu nazariyaga
44
+ ko'ra, davlatlar federal hukumatning konstitutsiyaviy vakolatlaridan tashqari
45
+ deb hisoblaydigan federal qonunlarni rad etishlari yoki bekor qilishlari mumkin.
46
+ - '"Take Me Out to the Ball Game" - bu Shimoliy Amerika beysbolining no Rasmiy himniga
47
+ aylangan Jack Norworth va Albert Von Tilzer tomonidan 1908 yilda yaratilgan Tin
48
+ Pan Alley qo''shiqidir, garchi uning mualliflaridan hech biri qo''shiqni yozishdan
49
+ oldin o''yinga bormagan bo''lsa ham.[1] Qo''shiq chorusi an''anaviy ravishda beysbol
50
+ o''yinining yettinchi o''yinining o''rtasida kuylanadi. Fanlar, odatda, birga
51
+ kuylashga rag''batlantirilgan va ba''zi futbol maydonlarida "uy jamoasi" so''zlari
52
+ jamoa nomi bilan almashtirilgan.'
53
+ - 'Bryton James Bryton Eric McClure (O''zbekiston: Брайтон Джеймс Брайтон Брайтон
54
+ Брайтон Брайтон Брайтон Брайтон Брайтон Брайтон Брайтон Брайтон Брайтон Брайтон
55
+ Брайтон Брайтон Брайтон Брайтон Брайтон Брайтон Брайтон Брайтон Брайтон Брайтон
56
+ Брайтон Брайтон Брайтон Брайтон Брайтон Брайтон Брайтон Брайтон Брайтон Брайтон
57
+ Брайтон Брайтон Брайтон Брайтон Брайтон Брайтон Брайтон Брайтон Брайтон Брайтон
58
+ Брайтон Брайтон Брайтон Брайтон Брайтон Брайтон Брайтон Брайтон Брайтон Брайтон
59
+ Брайтон Брайтон Брайтон Брайтон Брайтон Брайтон Брайтон Брайтон Брайтон Брайтон
60
+ Брайтон Брайтон Брайтон Брайтон Брайтон Брайтон Брайтон Брайтон Брайтон Брайтон
61
+ Брайтон Брайтон Брайтон Брайтон Брайтон Брайтон Брайтон Брайтон Брайтон Брайтон
62
+ Брайтон Брайтон Брайтон Брайтон Брайтон Брайтон Брайтон Брайтон Бра��тон Брайтон
63
+ Брайтон Брайтон Брайтон Брайтон Брайтон Брайтон Брайтон Брайтон Брайтон Брайт
64
+ Брайт Брайт Брайт Брайт Брайт Брайт Брайт Брайт Брайт Брайт Брайт Брайт Брайт
65
+ Брайт Брайт Брайт Брайт Брайт Брайт Брайт Брайт Брайт Брайт Брайт Брайт Брайт
66
+ Брайт Брайт Брайт Брайт Брайт Брайт Брайт Брайт Брайт Брайт Брайт Брайт Брайт
67
+ Брайт Брайт Брайт Брайт Брайт Брайт Брайт Брайт Брайт Брайт Брайт Брайт Брайт
68
+ Брайт Брайт Брайт Брайт Брайт Брайт Брайт Брайт Брайт Брай'
69
+ - source_sentence: Nyu-York shahridagi Uol-Strat qayerda joylashgan
70
+ sentences:
71
+ - Intrinsic factor Intrinsic factor (IF), shuningdek, oshqozon ichki faktor (GIF)
72
+ deb ham tanilgan, oshqozonning parietal hujayralari tomonidan ishlab chiqariladigan
73
+ glikoproteindir. Bu keyinchalik kichik ichakning iliumida vitamin B12 (cobalamin)
74
+ ni sug'orish uchun zarur.
75
+ - Biz Millerlarmiz Denverda yashovchi Devid Klark ismli kichik kannabis savdogari
76
+ pul va o'tmishdagi o'g'ir o'g'riliklarini o'g'irlaydi. Ulardan ba'zilari uning
77
+ boy giyohvandlik lordlari yetkazib beruvchi Brad Gurdlingerga qarzdor. Devid unga
78
+ olib kelinganidan so'ng Gurdlinger Dovudni qarzini to'xtatish uchun Meksikadan
79
+ marixuana "smirchasi"ni burishtirishga majbur qiladi. Bojxona orqali o'tishga
80
+ harakat qilayotgan bir kishi juda shubhali ekanligini anglab, u o'z stripperining
81
+ Ros, o'smir qochqin va kichkina o'g'ri Keysi va o'n sakkiz yoshli Keni bilan birga
82
+ "Dollar" deb nomlangan yolg'on oila sifatida suratga chiqaradi.
83
+ - Wall Street - bu Nyu-York shahridagi Lower Manhattan moliyaviy tumanidagi East
84
+ Riverda Broadwaydan Janubiy ko'chig'gacha shimoli-g'arbiydan janubi-sharbiygacha
85
+ o'tgan sakkiz blok uzunlikdagi ko'cha. [1] Vaqt o'tishi bilan, ushbu atama butun
86
+ AQShning moliyaviy bozorlari, Amerika moliyaviy xizmatlari sanoati (agar moliyaviy
87
+ firmalar jismoniy joylashtirilmasa ham) yoki Nyu-Yorkda joylashgan moliyaviy manfaatlar
88
+ uchun metonimga aylandi. [2]
89
+ - source_sentence: '"Mening orzuim bor" qo''shiqni kim yozgan'
90
+ sentences:
91
+ - Birma temir yo'li Tailandda joylashgan Hellfire Toursga ko'ra, "ikki ko'prik 1945
92
+ yil 13 fevral kuni Royal Air Force (RAF) bombardiruvchi samolyotlari tomonidan
93
+ muvaffaqiyatli bombardimon qilingan va zararlangan. Qozog'a poydevori tufayli
94
+ tuzatishlar amalga oshirildi va aprel oyida yog'och temir yo'l trestli ko'prik
95
+ qayta ish bilan ta'mirlandi. 3 aprel kuni AQSh armiyasi havo kuchlarining (USAAF)
96
+ Liberator og'ir bombachilari tomonidan ikkinchi bombardimon reyd qilindi.
97
+ - '"I Have a Dream" qo''shiqini Benny Andersson va Bjorn Ulvaeus yozgan va guruhning
98
+ 1979 yilgi Voulez-Vous albumiga olingan. Anni-Frid Lyngstad bosh qo''shiqlarni
99
+ kuylagan. 1979 yil dekabr oyida "Take a Chance on Me" ning jonli versiyasi bilan
100
+ B-qarshi sifatida chiqarilib chiqdi. Qopishtirilgan qo''shiq to''rtta guruh a''zosidan
101
+ tashqari boshqa vokalchilarni o''z ichiga olgan yagona ABBA qo''shig''i bo''lib
102
+ tan olingan. Yakuniy chorusda Stokholm xalqaro maktabi bolalar xori mavjud. Buyuk
103
+ Britaniyada "I Have a Dream" musiqasi "Another Brick in the Wall" tomonidan 1
104
+ o''rinni egalladi.'
105
+ - To'g'ri, o'lim bizni qilmaydi qismida (NCIS) Gibs Ryanning Dearingni tuzog'iga
106
+ tushirish uchun hukm qilingan sobiq ofitser Jonatan Kolni ishga qabul qilishga
107
+ qaror qiladi. Dastlab Dearing Colega uni uchratishni aytganda ishlashi mumkin
108
+ edi, lekin Dearing uchrashuvga kelmaydi va uning o'rniga Cole uchun telefon qoldiradi.
109
+ Oldingi qo'ng'iroqlar va Colega Gibsga direktor Vance bilan hech qachon qiziqmaganligini
110
+ va adolat bilan chindan ham qiziqishini bildiradi. Bosh qoshida, qo'ng'iroqni
111
+ tahlil qilish jamoasi uni tuzoqqa jalb qilish uchun uning mashinasida Vance avtopusxasi
112
+ borligini tushunadi, u o'g'irilganida o'rnatilgan, NCIS Bosh Qoshxonasiga qayiq
113
+ qilish va butun bino evakuatsiya qilinadi. Cole Tonyni deaktiv qilishga urinyapti,
114
+ ammo uning terma-tush ustida (qoshiq ustida) bor, chunki o'limga sabab bo'lganidan
115
+ so'ng, Bob Gibbsning telefon qo'ng'iroqidan qo'ng'iroq qildi va uning tanasi va
116
+ odamlari bilan birga qo'rqib, kompyuterda urilgan va kompyuterda urilgan, ammo
117
+ "Qo'ng'riqchi" bilan birga qo'ng'riqchixonaga tushadi.
118
+ - source_sentence: Lady antebellum ismi qayerdan kelib chiqqan ?
119
+ sentences:
120
+ - Lady Antebellum 2010 yil 9 avgust kuni BBC Radio 2 Drivetime Show-da guruh uy
121
+ egasiga Liza Tarbuqqa Antebellum nomi guruh "avval" uylarini suratga olganida
122
+ kelib chiqqanligini tushuntirdi. Avval urushdan oldingi arxitektura usuli Amerika
123
+ Janubiyidagi katta plantatsiya uylarini tasvirlaydi. Latindagi bellum so'zi "
124
+ urush" degani; "avval" demak " urushdan oldin " degani.
125
+ - Necrotising fasciitis B.C. 5-asrda Hippokrates necrotising yumshoq to'qima infektsiyasini
126
+ Streptococcal infeksiyaning komplikasiyasi bo'lgan kasallik deb tasvirlagan. Bu
127
+ kasallik "tanamizning barcha qismida eritsipellalarga ega bo'lgan, sababi esa
128
+ oddiy hodisa edi. Suyaklar, go'sht va suyaklar (qut, tendon yoki nerv) tanadan
129
+ tushib, ko'plab o'limlar yuz berdi". Necrotising yumshoq to'qima infektsiyasini
130
+ birinchi marta ingliz shifokor Leonard Gillespie va ingliz shifokor Gilbert Blaine
131
+ va Tomas Trotter tomonidan 18 asrda tavsiflab berilgan edi. O'sha paytda necrotising
132
+ yumshoq to'qima infektsiyasi pedaenik (g'irni-qizish yoki g'angrenni bosish) deb
133
+ nomlangan.
134
+ - Sutro yo'li Quyosh Orion qo'li ichki chekkasi yaqinida, Mahalliy Bubble mahalliy
135
+ Fluff ichida va Gould Beltda, Galaktik markazidan 26,4 ± 1,0 kly (8,09 ± 0,31
136
+ kpc) masofada joylashgan. Quyosh hozirda Galaktik diskning markaziy toshidan 530
137
+ parsek (1698 ly) uzoqlikda joylashgan.
138
+ pipeline_tag: sentence-similarity
139
+ library_name: sentence-transformers
140
+ metrics:
141
+ - cosine_accuracy@1
142
+ - cosine_accuracy@3
143
+ - cosine_accuracy@5
144
+ - cosine_accuracy@10
145
+ - cosine_precision@1
146
+ - cosine_precision@3
147
+ - cosine_precision@5
148
+ - cosine_precision@10
149
+ - cosine_recall@1
150
+ - cosine_recall@3
151
+ - cosine_recall@5
152
+ - cosine_recall@10
153
+ - cosine_ndcg@10
154
+ - cosine_mrr@10
155
+ - cosine_map@100
156
+ model-index:
157
+ - name: SentenceTransformer
158
+ results:
159
+ - task:
160
+ type: information-retrieval
161
+ name: Information Retrieval
162
+ dataset:
163
+ name: Unknown
164
+ type: unknown
165
+ metrics:
166
+ - type: cosine_accuracy@1
167
+ value: 0.598
168
+ name: Cosine Accuracy@1
169
+ - type: cosine_accuracy@3
170
+ value: 0.762
171
+ name: Cosine Accuracy@3
172
+ - type: cosine_accuracy@5
173
+ value: 0.811
174
+ name: Cosine Accuracy@5
175
+ - type: cosine_accuracy@10
176
+ value: 0.865
177
+ name: Cosine Accuracy@10
178
+ - type: cosine_precision@1
179
+ value: 0.598
180
+ name: Cosine Precision@1
181
+ - type: cosine_precision@3
182
+ value: 0.254
183
+ name: Cosine Precision@3
184
+ - type: cosine_precision@5
185
+ value: 0.16219999999999998
186
+ name: Cosine Precision@5
187
+ - type: cosine_precision@10
188
+ value: 0.0865
189
+ name: Cosine Precision@10
190
+ - type: cosine_recall@1
191
+ value: 0.598
192
+ name: Cosine Recall@1
193
+ - type: cosine_recall@3
194
+ value: 0.762
195
+ name: Cosine Recall@3
196
+ - type: cosine_recall@5
197
+ value: 0.811
198
+ name: Cosine Recall@5
199
+ - type: cosine_recall@10
200
+ value: 0.865
201
+ name: Cosine Recall@10
202
+ - type: cosine_ndcg@10
203
+ value: 0.7329033295091333
204
+ name: Cosine Ndcg@10
205
+ - type: cosine_mrr@10
206
+ value: 0.6903722222222224
207
+ name: Cosine Mrr@10
208
+ - type: cosine_map@100
209
+ value: 0.6946029442201882
210
+ name: Cosine Map@100
211
+ ---
212
+
213
+ # SentenceTransformer
214
+
215
+ This is a [sentence-transformers](https://www.SBERT.net) model trained. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
216
+
217
+ ## Model Details
218
+
219
+ ### Model Description
220
+ - **Model Type:** Sentence Transformer
221
+ <!-- - **Base model:** [Unknown](https://huggingface.co/unknown) -->
222
+ - **Maximum Sequence Length:** 2048 tokens
223
+ - **Output Dimensionality:** 768 dimensions
224
+ - **Similarity Function:** Cosine Similarity
225
+ <!-- - **Training Dataset:** Unknown -->
226
+ <!-- - **Language:** Unknown -->
227
+ <!-- - **License:** Unknown -->
228
+
229
+ ### Model Sources
230
+
231
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
232
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
233
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
234
+
235
+ ### Full Model Architecture
236
+
237
+ ```
238
+ SentenceTransformer(
239
+ (0): Transformer({'max_seq_length': 2048, 'do_lower_case': False, 'architecture': 'Gemma3TextModel'})
240
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
241
+ (2): Dense({'in_features': 768, 'out_features': 3072, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity'})
242
+ (3): Dense({'in_features': 3072, 'out_features': 768, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity'})
243
+ (4): Normalize()
244
+ )
245
+ ```
246
+
247
+ ## Usage
248
+
249
+ ### Direct Usage (Sentence Transformers)
250
+
251
+ First install the Sentence Transformers library:
252
+
253
+ ```bash
254
+ pip install -U sentence-transformers
255
+ ```
256
+
257
+ Then you can load this model and run inference.
258
+ ```python
259
+ from sentence_transformers import SentenceTransformer
260
+
261
+ # Download from the 🤗 Hub
262
+ model = SentenceTransformer("sentence_transformers_model_id")
263
+ # Run inference
264
+ queries = [
265
+ "Lady antebellum ismi qayerdan kelib chiqqan ?",
266
+ ]
267
+ documents = [
268
+ 'Lady Antebellum 2010 yil 9 avgust kuni BBC Radio 2 Drivetime Show-da guruh uy egasiga Liza Tarbuqqa Antebellum nomi guruh "avval" uylarini suratga olganida kelib chiqqanligini tushuntirdi. Avval urushdan oldingi arxitektura usuli Amerika Janubiyidagi katta plantatsiya uylarini tasvirlaydi. Latindagi bellum so\'zi " urush" degani; "avval" demak " urushdan oldin " degani.',
269
+ 'Necrotising fasciitis B.C. 5-asrda Hippokrates necrotising yumshoq to\'qima infektsiyasini Streptococcal infeksiyaning komplikasiyasi bo\'lgan kasallik deb tasvirlagan. Bu kasallik "tanamizning barcha qismida eritsipellalarga ega bo\'lgan, sababi esa oddiy hodisa edi. Suyaklar, go\'sht va suyaklar (qut, tendon yoki nerv) tanadan tushib, ko\'plab o\'limlar yuz berdi". Necrotising yumshoq to\'qima infektsiyasini birinchi marta ingliz shifokor Leonard Gillespie va ingliz shifokor Gilbert Blaine va Tomas Trotter tomonidan 18 asrda tavsiflab berilgan edi. O\'sha paytda necrotising yumshoq to\'qima infektsiyasi pedaenik (g\'irni-qizish yoki g\'angrenni bosish) deb nomlangan.',
270
+ "Sutro yo'li Quyosh Orion qo'li ichki chekkasi yaqinida, Mahalliy Bubble mahalliy Fluff ichida va Gould Beltda, Galaktik markazidan 26,4 ± 1,0 kly (8,09 ± 0,31 kpc) masofada joylashgan. Quyosh hozirda Galaktik diskning markaziy toshidan 530 parsek (1698 ly) uzoqlikda joylashgan.",
271
+ ]
272
+ query_embeddings = model.encode_query(queries)
273
+ document_embeddings = model.encode_document(documents)
274
+ print(query_embeddings.shape, document_embeddings.shape)
275
+ # [1, 768] [3, 768]
276
+
277
+ # Get the similarity scores for the embeddings
278
+ similarities = model.similarity(query_embeddings, document_embeddings)
279
+ print(similarities)
280
+ # tensor([[ 0.6160, 0.1431, -0.0269]])
281
+ ```
282
+
283
+ <!--
284
+ ### Direct Usage (Transformers)
285
+
286
+ <details><summary>Click to see the direct usage in Transformers</summary>
287
+
288
+ </details>
289
+ -->
290
+
291
+ <!--
292
+ ### Downstream Usage (Sentence Transformers)
293
+
294
+ You can finetune this model on your own dataset.
295
+
296
+ <details><summary>Click to expand</summary>
297
+
298
+ </details>
299
+ -->
300
+
301
+ <!--
302
+ ### Out-of-Scope Use
303
+
304
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
305
+ -->
306
+
307
+ ## Evaluation
308
+
309
+ ### Metrics
310
+
311
+ #### Information Retrieval
312
+
313
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
314
+
315
+ | Metric | Value |
316
+ |:--------------------|:-----------|
317
+ | cosine_accuracy@1 | 0.598 |
318
+ | cosine_accuracy@3 | 0.762 |
319
+ | cosine_accuracy@5 | 0.811 |
320
+ | cosine_accuracy@10 | 0.865 |
321
+ | cosine_precision@1 | 0.598 |
322
+ | cosine_precision@3 | 0.254 |
323
+ | cosine_precision@5 | 0.1622 |
324
+ | cosine_precision@10 | 0.0865 |
325
+ | cosine_recall@1 | 0.598 |
326
+ | cosine_recall@3 | 0.762 |
327
+ | cosine_recall@5 | 0.811 |
328
+ | cosine_recall@10 | 0.865 |
329
+ | **cosine_ndcg@10** | **0.7329** |
330
+ | cosine_mrr@10 | 0.6904 |
331
+ | cosine_map@100 | 0.6946 |
332
+
333
+ <!--
334
+ ## Bias, Risks and Limitations
335
+
336
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
337
+ -->
338
+
339
+ <!--
340
+ ### Recommendations
341
+
342
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
343
+ -->
344
+
345
+ ## Training Details
346
+
347
+ ### Training Dataset
348
+
349
+ #### Unnamed Dataset
350
+
351
+ * Size: 18,000 training samples
352
+ * Columns: <code>sentence_0</code>, <code>sentence_1</code>, <code>sentence_2</code>, and <code>sentence_3</code>
353
+ * Approximate statistics based on the first 1000 samples:
354
+ | | sentence_0 | sentence_1 | sentence_2 | sentence_3 |
355
+ |:--------|:---------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
356
+ | type | string | string | string | string |
357
+ | details | <ul><li>min: 7 tokens</li><li>mean: 18.8 tokens</li><li>max: 55 tokens</li></ul> | <ul><li>min: 27 tokens</li><li>mean: 162.4 tokens</li><li>max: 985 tokens</li></ul> | <ul><li>min: 11 tokens</li><li>mean: 159.54 tokens</li><li>max: 945 tokens</li></ul> | <ul><li>min: 26 tokens</li><li>mean: 158.32 tokens</li><li>max: 754 tokens</li></ul> |
358
+ * Samples:
359
+ | sentence_0 | sentence_1 | sentence_2 | sentence_3 |
360
+ |:----------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
361
+ | <code>koʻchada oʻtirganlarni kuylagan</code> | <code>(Sittin' On) The Dock of the Bay "Sittin' On) The Dock of the Bay" - soul qo'shiqchisi Otis Redding va gitarochi Steve Cropper tomonidan birgalikda yozilgan qo'shiq. Redding tomonidan 1967 yilda ikki marta, shu jumladan u samolyot halok bo'lishidan bir necha kun oldin, yozib olingan. Qo'shiq 1968 yilda Stax Recordsning Volt kompaniyasida chiqarilgan, [1] AQShda reytinglar safida birinchi o'limdan keyingi singl bo'lib chiqdi.</code> | <code>Sidney Harbour Bridge Ko'prikning umumiy moliyaviy qiymati 6,25 million funt funtligidan iborat edi, bu 1988 yilgacha to'liq to'lanmagan. [1]</code> | <code>Saudiya Arabistonining siyosati Saudiya Arabistonining siyosati ayrim islom yo'nalishlari bo'lgan mutlaq monarxiya kontestida amalga oshiriladi, unda shoh davlat va hukumat rahbari bo'lib xizmat qiladi. Qarorlar katta darajada shoh oilasi va diniy muassasalarning katta ruhoniylari o'rtasida maslahatlashuv asosida qabul qilinadi. Qur'on mamlakat konstitutsiyasi deb e'lon qilinadi, u islom qonuni asosida boshqaradi (Shari'a). Yangi shoh va yangi nasl prinsi tayinlash uchun sodiqlik kengashi mas'ul. To'liq yoshdagi barcha fuqarolar majlis deb nomlangan an'anaviy qabilaviy majlis orqali to'g'ridan-to'g'ri shohga tashrif buyurish, uchrashish va iltimos qilish huquqiga ega.[1]</code> |
362
+ | <code>Hindistondagi yer buzilishining sabablarini tushuntiring</code> | <code>Yerni buzish O'tkir cho'chqachilik - chorva mollarini ko'tarib oluvchi quvvatdan ortiq darajada chorvachilik bilan tabiiy o'tlar o'tishi; natijada o'simlik qoplamasining pasayishi shamol va suv eroziyasining asosiy sababidir. Bu Afg'onistonda muhim omil hisoblanadi. 1980-1990 yillarda aholi bosimining oshishi, sakkiz mamlakatdan oltida har bir kishiga nisbatan qishloq xo'jaligi yerlarining allaqachon kichik maydonlarida pasayishlarga olib keldi (14% Hindiston uchun va 21% Pokiston uchun).</code> | <code>O'q-po'drat texnologiyasining tarixi O'n to'rtinchi asr o'rtalarida Hindistonga kelgan deb hisoblanadi. Ammo uni Xitoyni ham, Hindistonning ayrim chegara hududlarini ham bosib olgan mo'g'ollar ancha oldin, ehtimol XIII asr o'rtalarida ham joriy etgan bo'lishi mumkin. Katta bir mo'g'ol imperiyasining birlashishi Xitoy texnologiyasining Hindistonning mo'g'ollar tomonidan bosib olingan qismlariga erkin o'tkazilishiga olib keldi. Shunga qaramay, mo'g'ollar Hindistonga bostirib kirganlarida Xitoyga o'q-po'drat qurollaridan foydalangan deb hisoblanadi. Tarix-i Firishta (16061607) da mo'g'ollar hukmron Huligu elchiga 1258 yilda Dehliga kelganida ajoyib pyrotexnika taqdim etilganligi yozilgan. Birinchi o'q-po'drat texnologiyasini mo'g'ollar tomonidan Hindistonga o'q-po'drat qo'yishdi.</code> | <code>1765 yil Stamp Act (qisqa nom Amerika koloniyalarida majburiyatlar to'g'risidagi qonun 1765; 5 George III, c. 12) - Buyuk Britaniya parlamenti qonunidir, u Britaniya Amerika koloniyalariga to'g'ridan-to'g'ri soliq solgan va koloniyalardagi ko'plab bosma materiallar Londonda ishlab chiqarilgan bosma qog'ozda ishlab chiqarilishi kerak edi, bu bosma qog'ozda daromad sumkasi bor edi.[1][2] Bosma materiallar yuridik hujjatlar, jurnallar, o'yin kartalari, gazetalar va ko'plab boshqa qog'ozlarni o'z ichiga olgan. Oldingi soliqlar kabi, bosma soliq to'lovning maqsadi kolonial qog'oz pulda emas, balki amalda Britaniya valyutasida to'lanishi kerak edi.</code> |
363
+ | <code>qonun va tartib boʻyicha oʻldirilgan Ada kim edi?</code> | <code>Aleksandra Borgiya Borgiya Law & Order franchisasi tarixidagi eng qisqa ishtirok etgan yordamchi tuman prokurori edi, u faqat 33 ta epizodda ko'rinadi. Oila qotilligini tekshirishda prokurorlik idorasi er Frank Andreasga e'tibor qaratadi, u qotillarga uyga bostirib kiruvchi talon-torojlarni sodir etish uchun ishlatiladigan soxta DEA belgilari bilan ta'minlaydi. Borgiya Andreasga uning sheriklarini tashlashga bosim o'tkazadi va keyinchalik o'z xonadoniga o'g'irlandi. Uning jasadi keyinchalik tashlab qo'yilgan mashinaning bagazida topilgan, bog'langan, shafqatsiz urilgan va o'zini bo'g'ib qo'yganidan so'ng asfiksiyadan o'lgan. Ajablanayotgan McCoy o'zining qotillarini qamoq qilish uchun soxta ayblovni tashkil etadi, qonuniy axloqiy ahlakni o'zgartiradi.</code> | <code>Harry Potter (qarakteri) Harry Potter va o'lim marosimlarida Harry, Ron va Hermione Hogwartsdan chiqib, Dumbledore vazifasini bajaradilar: Voldemortning qolgan to'rtta Horcruxini qidirish va yo'q qilish, keyin Qorong'i Lordni topish va o'ldirish. Uch kishi Voldemortning yangi tashkil etilgan totalitar politsiya davlatiga qarshi o'zlarini qo'yishadi, bu harakat Xarrining jasorati va axloqiy xarakterini sinaydi. Voldemortning sehr vazirligini egallashi propaganda va qo'rquv bilan rag'batlantirilgan Muggle-bo'ralarga qarshi diskriminatorlik va genotsid siyosatiga olib keladi. J. K. Rowlingning aytishicha, Harri Cruciatus va Imperius Curse, azob-uqubat va ongni nazorat qilish uchun kechirilmas la'natlardan foydalanadi.</code> | <code>2018 yilgi kollej futboli playofflari milliy chempionati 2018 yilgi kollej futboli playofflari milliy chempionati - bu 2017 yilgi mavsum uchun NCAA I futbol Bowl bo'limidagi milliy chempionni belgilaydigan kollej futboli bo'l o'yinidir. Bu o'yin 2018 yil 8 yanvar kuni Georgia shtatining Atlanta shahridagi Mercedes-Benz stadionida o'ynatiladi. Uch yillik aylanish doirasida o'yin 2018 yil 1 yanvar kuni o'ynaydigan ikki yarim final bo'l o'yinlarining g'oliblari o'rtasida o'ynatiladi: Rose Bowl o'yin va Sugar Bowl. Ushbu ikki o'yinda ishtirokchilar 2017 yilgi muntazam mavsum yakunidan so'ng aniqlanadi.</code> |
364
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
365
+ ```json
366
+ {
367
+ "scale": 20.0,
368
+ "similarity_fct": "cos_sim",
369
+ "gather_across_devices": false
370
+ }
371
+ ```
372
+
373
+ ### Training Hyperparameters
374
+ #### Non-Default Hyperparameters
375
+
376
+ - `eval_strategy`: steps
377
+ - `fp16`: True
378
+ - `multi_dataset_batch_sampler`: round_robin
379
+
380
+ #### All Hyperparameters
381
+ <details><summary>Click to expand</summary>
382
+
383
+ - `overwrite_output_dir`: False
384
+ - `do_predict`: False
385
+ - `eval_strategy`: steps
386
+ - `prediction_loss_only`: True
387
+ - `per_device_train_batch_size`: 8
388
+ - `per_device_eval_batch_size`: 8
389
+ - `per_gpu_train_batch_size`: None
390
+ - `per_gpu_eval_batch_size`: None
391
+ - `gradient_accumulation_steps`: 1
392
+ - `eval_accumulation_steps`: None
393
+ - `torch_empty_cache_steps`: None
394
+ - `learning_rate`: 5e-05
395
+ - `weight_decay`: 0.0
396
+ - `adam_beta1`: 0.9
397
+ - `adam_beta2`: 0.999
398
+ - `adam_epsilon`: 1e-08
399
+ - `max_grad_norm`: 1
400
+ - `num_train_epochs`: 3
401
+ - `max_steps`: -1
402
+ - `lr_scheduler_type`: linear
403
+ - `lr_scheduler_kwargs`: {}
404
+ - `warmup_ratio`: 0.0
405
+ - `warmup_steps`: 0
406
+ - `log_level`: passive
407
+ - `log_level_replica`: warning
408
+ - `log_on_each_node`: True
409
+ - `logging_nan_inf_filter`: True
410
+ - `save_safetensors`: True
411
+ - `save_on_each_node`: False
412
+ - `save_only_model`: False
413
+ - `restore_callback_states_from_checkpoint`: False
414
+ - `no_cuda`: False
415
+ - `use_cpu`: False
416
+ - `use_mps_device`: False
417
+ - `seed`: 42
418
+ - `data_seed`: None
419
+ - `jit_mode_eval`: False
420
+ - `use_ipex`: False
421
+ - `bf16`: False
422
+ - `fp16`: True
423
+ - `fp16_opt_level`: O1
424
+ - `half_precision_backend`: auto
425
+ - `bf16_full_eval`: False
426
+ - `fp16_full_eval`: False
427
+ - `tf32`: None
428
+ - `local_rank`: 0
429
+ - `ddp_backend`: None
430
+ - `tpu_num_cores`: None
431
+ - `tpu_metrics_debug`: False
432
+ - `debug`: []
433
+ - `dataloader_drop_last`: False
434
+ - `dataloader_num_workers`: 0
435
+ - `dataloader_prefetch_factor`: None
436
+ - `past_index`: -1
437
+ - `disable_tqdm`: False
438
+ - `remove_unused_columns`: True
439
+ - `label_names`: None
440
+ - `load_best_model_at_end`: False
441
+ - `ignore_data_skip`: False
442
+ - `fsdp`: []
443
+ - `fsdp_min_num_params`: 0
444
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
445
+ - `fsdp_transformer_layer_cls_to_wrap`: None
446
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
447
+ - `parallelism_config`: None
448
+ - `deepspeed`: None
449
+ - `label_smoothing_factor`: 0.0
450
+ - `optim`: adamw_torch_fused
451
+ - `optim_args`: None
452
+ - `adafactor`: False
453
+ - `group_by_length`: False
454
+ - `length_column_name`: length
455
+ - `ddp_find_unused_parameters`: None
456
+ - `ddp_bucket_cap_mb`: None
457
+ - `ddp_broadcast_buffers`: False
458
+ - `dataloader_pin_memory`: True
459
+ - `dataloader_persistent_workers`: False
460
+ - `skip_memory_metrics`: True
461
+ - `use_legacy_prediction_loop`: False
462
+ - `push_to_hub`: False
463
+ - `resume_from_checkpoint`: None
464
+ - `hub_model_id`: None
465
+ - `hub_strategy`: every_save
466
+ - `hub_private_repo`: None
467
+ - `hub_always_push`: False
468
+ - `hub_revision`: None
469
+ - `gradient_checkpointing`: False
470
+ - `gradient_checkpointing_kwargs`: None
471
+ - `include_inputs_for_metrics`: False
472
+ - `include_for_metrics`: []
473
+ - `eval_do_concat_batches`: True
474
+ - `fp16_backend`: auto
475
+ - `push_to_hub_model_id`: None
476
+ - `push_to_hub_organization`: None
477
+ - `mp_parameters`:
478
+ - `auto_find_batch_size`: False
479
+ - `full_determinism`: False
480
+ - `torchdynamo`: None
481
+ - `ray_scope`: last
482
+ - `ddp_timeout`: 1800
483
+ - `torch_compile`: False
484
+ - `torch_compile_backend`: None
485
+ - `torch_compile_mode`: None
486
+ - `include_tokens_per_second`: False
487
+ - `include_num_input_tokens_seen`: False
488
+ - `neftune_noise_alpha`: None
489
+ - `optim_target_modules`: None
490
+ - `batch_eval_metrics`: False
491
+ - `eval_on_start`: False
492
+ - `use_liger_kernel`: False
493
+ - `liger_kernel_config`: None
494
+ - `eval_use_gather_object`: False
495
+ - `average_tokens_across_devices`: False
496
+ - `prompts`: None
497
+ - `batch_sampler`: batch_sampler
498
+ - `multi_dataset_batch_sampler`: round_robin
499
+ - `router_mapping`: {}
500
+ - `learning_rate_mapping`: {}
501
+
502
+ </details>
503
+
504
+ ### Training Logs
505
+ | Epoch | Step | Training Loss | cosine_ndcg@10 |
506
+ |:------:|:----:|:-------------:|:--------------:|
507
+ | 0.2222 | 500 | 0.4649 | 0.6259 |
508
+ | 0.4444 | 1000 | 0.5086 | 0.5681 |
509
+ | 0.6667 | 1500 | 0.5243 | 0.6237 |
510
+ | 0.8889 | 2000 | 0.5062 | 0.6097 |
511
+ | 1.0 | 2250 | - | 0.5946 |
512
+ | 1.1111 | 2500 | 0.3389 | 0.6567 |
513
+ | 1.3333 | 3000 | 0.1844 | 0.6175 |
514
+ | 1.5556 | 3500 | 0.1605 | 0.6577 |
515
+ | 1.7778 | 4000 | 0.144 | 0.6864 |
516
+ | 2.0 | 4500 | 0.1451 | 0.6871 |
517
+ | 2.2222 | 5000 | 0.0263 | 0.7154 |
518
+ | 2.4444 | 5500 | 0.0312 | 0.7324 |
519
+ | 2.6667 | 6000 | 0.0279 | 0.7329 |
520
+
521
+
522
+ ### Framework Versions
523
+ - Python: 3.13.5
524
+ - Sentence Transformers: 5.1.0
525
+ - Transformers: 4.56.1
526
+ - PyTorch: 2.8.0+cu128
527
+ - Accelerate: 1.9.0
528
+ - Datasets: 2.19.1
529
+ - Tokenizers: 0.22.0
530
+
531
+ ## Citation
532
+
533
+ ### BibTeX
534
+
535
+ #### Sentence Transformers
536
+ ```bibtex
537
+ @inproceedings{reimers-2019-sentence-bert,
538
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
539
+ author = "Reimers, Nils and Gurevych, Iryna",
540
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
541
+ month = "11",
542
+ year = "2019",
543
+ publisher = "Association for Computational Linguistics",
544
+ url = "https://arxiv.org/abs/1908.10084",
545
+ }
546
+ ```
547
+
548
+ #### MultipleNegativesRankingLoss
549
+ ```bibtex
550
+ @misc{henderson2017efficient,
551
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
552
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
553
+ year={2017},
554
+ eprint={1705.00652},
555
+ archivePrefix={arXiv},
556
+ primaryClass={cs.CL}
557
+ }
558
+ ```
559
+
560
+ <!--
561
+ ## Glossary
562
+
563
+ *Clearly define terms in order to be accessible across audiences.*
564
+ -->
565
+
566
+ <!--
567
+ ## Model Card Authors
568
+
569
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
570
+ -->
571
+
572
+ <!--
573
+ ## Model Card Contact
574
+
575
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
576
+ -->
added_tokens.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "<image_soft_token>": 262144
3
+ }
config.json ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_sliding_window_pattern": 6,
3
+ "architectures": [
4
+ "Gemma3TextModel"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "attn_logit_softcapping": null,
9
+ "bos_token_id": 2,
10
+ "dtype": "float32",
11
+ "eos_token_id": 1,
12
+ "final_logit_softcapping": null,
13
+ "head_dim": 256,
14
+ "hidden_activation": "gelu_pytorch_tanh",
15
+ "hidden_size": 768,
16
+ "initializer_range": 0.02,
17
+ "intermediate_size": 1152,
18
+ "layer_types": [
19
+ "sliding_attention",
20
+ "sliding_attention",
21
+ "sliding_attention",
22
+ "sliding_attention",
23
+ "sliding_attention",
24
+ "full_attention",
25
+ "sliding_attention",
26
+ "sliding_attention",
27
+ "sliding_attention",
28
+ "sliding_attention",
29
+ "sliding_attention",
30
+ "full_attention",
31
+ "sliding_attention",
32
+ "sliding_attention",
33
+ "sliding_attention",
34
+ "sliding_attention",
35
+ "sliding_attention",
36
+ "full_attention",
37
+ "sliding_attention",
38
+ "sliding_attention",
39
+ "sliding_attention",
40
+ "sliding_attention",
41
+ "sliding_attention",
42
+ "full_attention"
43
+ ],
44
+ "max_position_embeddings": 2048,
45
+ "model_type": "gemma3_text",
46
+ "num_attention_heads": 3,
47
+ "num_hidden_layers": 24,
48
+ "num_key_value_heads": 1,
49
+ "pad_token_id": 0,
50
+ "query_pre_attn_scalar": 256,
51
+ "rms_norm_eps": 1e-06,
52
+ "rope_local_base_freq": 10000.0,
53
+ "rope_scaling": null,
54
+ "rope_theta": 1000000.0,
55
+ "sliding_window": 512,
56
+ "transformers_version": "4.56.1",
57
+ "use_bidirectional_attention": true,
58
+ "use_cache": true,
59
+ "vocab_size": 262144
60
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "model_type": "SentenceTransformer",
3
+ "__version__": {
4
+ "sentence_transformers": "5.1.0",
5
+ "transformers": "4.56.1",
6
+ "pytorch": "2.8.0+cu128"
7
+ },
8
+ "prompts": {
9
+ "query": "task: search result | query: ",
10
+ "document": "title: none | text: ",
11
+ "BitextMining": "task: search result | query: ",
12
+ "Clustering": "task: clustering | query: ",
13
+ "Classification": "task: classification | query: ",
14
+ "InstructionRetrieval": "task: code retrieval | query: ",
15
+ "MultilabelClassification": "task: classification | query: ",
16
+ "PairClassification": "task: sentence similarity | query: ",
17
+ "Reranking": "task: search result | query: ",
18
+ "Retrieval": "task: search result | query: ",
19
+ "Retrieval-query": "task: search result | query: ",
20
+ "Retrieval-document": "title: none | text: ",
21
+ "STS": "task: sentence similarity | query: ",
22
+ "Summarization": "task: summarization | query: "
23
+ },
24
+ "default_prompt_name": null,
25
+ "similarity_fn_name": "cosine"
26
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:16436937e47ac3e6b6fe1a76ee6181168060613fc1808c2d540411f65464bbeb
3
+ size 1211486072
modules.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Dense",
18
+ "type": "sentence_transformers.models.Dense"
19
+ },
20
+ {
21
+ "idx": 3,
22
+ "name": "3",
23
+ "path": "3_Dense",
24
+ "type": "sentence_transformers.models.Dense"
25
+ },
26
+ {
27
+ "idx": 4,
28
+ "name": "4",
29
+ "path": "4_Normalize",
30
+ "type": "sentence_transformers.models.Normalize"
31
+ }
32
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 2048,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "boi_token": "<start_of_image>",
3
+ "bos_token": {
4
+ "content": "<bos>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false
9
+ },
10
+ "eoi_token": "<end_of_image>",
11
+ "eos_token": {
12
+ "content": "<eos>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false
17
+ },
18
+ "image_token": "<image_soft_token>",
19
+ "pad_token": {
20
+ "content": "<pad>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false
25
+ },
26
+ "unk_token": {
27
+ "content": "<unk>",
28
+ "lstrip": false,
29
+ "normalized": false,
30
+ "rstrip": false,
31
+ "single_word": false
32
+ }
33
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:216e2a79606fe879c9f17c529c71cd241338407fd5646b595ffd3c4b9ea1d503
3
+ size 33385262
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1299c11d7cf632ef3b4e11937501358ada021bbdf7c47638d13c0ee982f2e79c
3
+ size 4689074
tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff