SamMorgan commited on
Commit
775e12a
·
1 Parent(s): a8c290d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +7 -9
README.md CHANGED
@@ -5,10 +5,16 @@ tags:
5
  - computer vision
6
  - darknet
7
  - yolo
 
8
 
9
  datasets:
10
  - coco
11
  - imagenette
 
 
 
 
 
12
  ---
13
 
14
  # TensorFlow-yolov4-tflite
@@ -27,7 +33,6 @@ This yolov4 library uses Tensorflow 2.0 and is available on. this [Github](https
27
 
28
  ### What can you use yolov4-tflite for?
29
 
30
-
31
  ```bash
32
  # Convert darknet weights to tensorflow
33
  ## yolov4
@@ -85,7 +90,7 @@ python save_model.py --weights ./data/yolov4.weights --output ./checkpoints/yolo
85
  python convert_trt.py --weights ./checkpoints/yolov4.tf --quantize_mode float16 --output ./checkpoints/yolov4-trt-fp16-416
86
  ```
87
 
88
- ### Evaluate on COCO 2017 Dataset
89
  ```bash
90
  # run script in /script/get_coco_dataset_2017.sh to download COCO 2017 Dataset
91
  # preprocess coco dataset
@@ -157,13 +162,6 @@ python benchmarks.py --size 416 --model yolov4 --weights ./data/yolov4.weights
157
  | YoloV3 FPS | | | |
158
  | YoloV4 FPS | | | |
159
 
160
- ### Traning your own model
161
- ```bash
162
- # Prepare your dataset
163
- # If you want to train from scratch:
164
- In config.py set FISRT_STAGE_EPOCHS=0
165
- # Run script:
166
- python train.py
167
 
168
  # Transfer learning:
169
  python train.py --weights ./data/yolov4.weights
 
5
  - computer vision
6
  - darknet
7
  - yolo
8
+ - tensorflow
9
 
10
  datasets:
11
  - coco
12
  - imagenette
13
+
14
+ license: mit
15
+
16
+ thumbnail: https://github.com/hunglc007/tensorflow-yolov4-tflite
17
+
18
  ---
19
 
20
  # TensorFlow-yolov4-tflite
 
33
 
34
  ### What can you use yolov4-tflite for?
35
 
 
36
  ```bash
37
  # Convert darknet weights to tensorflow
38
  ## yolov4
 
90
  python convert_trt.py --weights ./checkpoints/yolov4.tf --quantize_mode float16 --output ./checkpoints/yolov4-trt-fp16-416
91
  ```
92
 
93
+ ### Evaluated on COCO 2017 Dataset
94
  ```bash
95
  # run script in /script/get_coco_dataset_2017.sh to download COCO 2017 Dataset
96
  # preprocess coco dataset
 
162
  | YoloV3 FPS | | | |
163
  | YoloV4 FPS | | | |
164
 
 
 
 
 
 
 
 
165
 
166
  # Transfer learning:
167
  python train.py --weights ./data/yolov4.weights