import torch | |
import torch.nn as nn | |
from transformers import AutoModel | |
class AbusePatternDetector(nn.Module): | |
def __init__(self, model_name, num_labels): | |
super().__init__() | |
self.bert = AutoModel.from_pretrained(model_name) | |
self.dropout = nn.Dropout(0.3) | |
self.classifier = nn.Linear(self.bert.config.hidden_size, num_labels) | |
def forward(self, input_ids, attention_mask): | |
outputs = self.bert(input_ids=input_ids, attention_mask=attention_mask) | |
pooled_output = outputs.last_hidden_state[:, 0] # Use [CLS] token | |
pooled_output = self.dropout(pooled_output) | |
logits = self.classifier(pooled_output) | |
return logits | |