SamanthaStorm commited on
Commit
2488050
·
verified ·
1 Parent(s): 5018746

Enhanced DARVO detector v2 - 84% accuracy, improved accountability detection

Browse files
Files changed (8) hide show
  1. README.md +171 -165
  2. config.json +17 -20
  3. model.safetensors +2 -2
  4. model_info.json +14 -0
  5. special_tokens_map.json +5 -49
  6. tokenizer.json +0 -0
  7. tokenizer_config.json +23 -32
  8. vocab.txt +0 -0
README.md CHANGED
@@ -1,199 +1,205 @@
1
  ---
 
 
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
 
 
 
11
 
12
- ## Model Details
13
 
14
- ### Model Description
 
 
 
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
 
 
 
 
 
 
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
 
 
29
 
30
- <!-- Provide the basic links for the model. -->
 
 
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
- ## Uses
 
 
 
 
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
 
39
 
40
- ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
 
 
 
43
 
44
- [More Information Needed]
45
 
46
- ### Downstream Use [optional]
 
 
 
 
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
 
50
- [More Information Needed]
 
 
 
 
51
 
52
- ### Out-of-Scope Use
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
 
 
 
55
 
56
- [More Information Needed]
 
 
 
57
 
58
- ## Bias, Risks, and Limitations
 
 
 
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
 
62
- [More Information Needed]
63
 
64
- ### Recommendations
 
 
 
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
 
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69
 
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
1
  ---
2
+ language: en
3
+ license: mit
4
  library_name: transformers
5
+ tags:
6
+ - text-classification
7
+ - psychology
8
+ - abuse-detection
9
+ - darvo
10
+ - manipulation-detection
11
+ - mental-health
12
+ - relationship-analysis
13
+ - tether-pro
14
+ datasets:
15
+ - custom
16
+ metrics:
17
+ - mse
18
+ - mae
19
+ - accuracy
20
+ - auc
21
+ model-index:
22
+ - name: tether-darvo-regressor-v1
23
+ results:
24
+ - task:
25
+ type: text-classification
26
+ name: DARVO Detection
27
+ metrics:
28
+ - type: mse
29
+ value: 0.043
30
+ - type: mae
31
+ value: 0.171
32
+ - type: accuracy
33
+ value: 0.842
34
+ - type: auc
35
+ value: 0.881
36
  ---
37
 
38
+ # Tether Pro DARVO Regressor v2
39
 
40
+ ## Model Description
41
 
42
+ This model detects DARVO (Deny, Attack, Reverse Victim & Offender) manipulation tactics in text communication. DARVO is a psychological manipulation strategy where an abuser:
43
 
44
+ 1. **Denies** the abuse ever happened
45
+ 2. **Attacks** the victim for bringing it up
46
+ 3. **Reverses** the roles to claim they are the victim
47
 
48
+ ## Key Features
49
 
50
+ 🎯 **Role-Aware Detection**: Distinguishes between genuine accountability and manipulation tactics
51
+ 🔬 **Research-Grade Accuracy**: 84% accuracy with 0.88 AUC
52
+ ⚡ **Real-Time Analysis**: Optimized for fast inference
53
+ 🛡️ **Professional Use**: Designed for therapists, legal professionals, and safety applications
54
 
55
+ ## Performance Metrics
56
 
57
+ | Metric | Score |
58
+ |--------|-------|
59
+ | **R²** | 0.665 |
60
+ | **MAE** | 0.171 |
61
+ | **MSE** | 0.043 |
62
+ | **Accuracy** | 84.2% |
63
+ | **AUC** | 88.1% |
64
 
65
+ ## Usage
 
 
 
 
 
 
66
 
67
+ ```python
68
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
69
+ import torch
70
 
71
+ # Load model and tokenizer
72
+ tokenizer = AutoTokenizer.from_pretrained("SamanthaStorm/tether-darvo-regressor-v1")
73
+ model = AutoModelForSequenceClassification.from_pretrained("SamanthaStorm/tether-darvo-regressor-v1")
74
 
75
+ # Example usage
76
+ text = "You're the one being abusive to me right now"
 
77
 
78
+ # Tokenize and predict
79
+ inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
80
+ with torch.no_grad():
81
+ outputs = model(**inputs)
82
+ darvo_score = outputs.logits.item()
83
 
84
+ print(f"DARVO Score: {darvo_score:.3f}") # Higher scores = more DARVO tactics
85
+ ```
86
 
87
+ ## Score Interpretation
88
 
89
+ - **0.0 - 0.3**: Genuine accountability, healthy communication
90
+ - **0.3 - 0.6**: Some defensive patterns, mild deflection
91
+ - **0.6 - 0.8**: Moderate DARVO tactics, concerning patterns
92
+ - **0.8 - 1.0**: Strong DARVO tactics, victim reversal
93
 
94
+ ## Example Predictions
95
 
96
+ | Text | DARVO Score | Interpretation |
97
+ |------|-------------|----------------|
98
+ | "You're the one being abusive to me right now" | 0.870 | High DARVO - victim reversal |
99
+ | "I don't remember saying that" | 0.224 | Low DARVO - simple denial |
100
+ | "I take full responsibility for my actions" | 0.205 | Very low DARVO - accountability |
101
 
102
+ ## Training Data
103
 
104
+ Trained on 285 carefully curated examples including:
105
+ - **High DARVO**: Explicit victim reversal tactics
106
+ - **Medium DARVO**: Deflection and minimization patterns
107
+ - **Low DARVO**: Genuine accountability and healthy communication
108
+ - **Contrast Examples**: Non-apologies vs real apologies
109
 
110
+ ## Applications
111
 
112
+ ### 🏥 Clinical Therapy
113
+ - Help therapists identify manipulation patterns in client relationships
114
+ - Assist in couples counseling to recognize unhealthy dynamics
115
+ - Support trauma therapy by validating victim experiences
116
 
117
+ ### ⚖️ Legal Documentation
118
+ - Analyze communication patterns in domestic violence cases
119
+ - Provide objective evidence of psychological manipulation
120
+ - Support legal professionals in building abuse cases
121
 
122
+ ### 🏢 Workplace Safety
123
+ - Identify harassment patterns in workplace communications
124
+ - Support HR investigations with objective analysis
125
+ - Create safer work environments through pattern recognition
126
 
127
+ ## Ethical Considerations
128
 
129
+ ⚠️ **Important**: This model is designed to assist professionals and should not be used as the sole basis for serious decisions about relationships or safety.
130
 
131
+ - **Professional Use**: Best used by trained therapists, counselors, and legal professionals
132
+ - **Context Matters**: Consider cultural, situational, and individual factors
133
+ - **Not Diagnostic**: Does not diagnose psychological conditions
134
+ - **Privacy**: Ensure consent when analyzing personal communications
135
 
136
+ ## Technical Details
137
 
138
+ - **Base Model**: DistilBERT (distilbert-base-uncased)
139
+ - **Architecture**: Custom regression head with 4-layer neural network
140
+ - **Training**: 8 epochs with cosine learning rate scheduling
141
+ - **Optimization**: Mixed precision training (FP16)
142
+ - **Max Length**: 256 tokens for efficiency
143
+
144
+ ## Model Architecture
145
+
146
+ ```
147
+ DistilBERT Base
148
+
149
+ Linear(768 → 768) + GELU + Dropout
150
+
151
+ Linear(768 → 384) + GELU + Dropout
152
+
153
+ Linear(384 → 192) + GELU + Dropout
154
+
155
+ Linear(192 → 1) + Sigmoid
156
+
157
+ DARVO Score (0.0 - 1.0)
158
+ ```
159
+
160
+ ## Version History
161
+
162
+ ### v2 (Current)
163
+ - ✅ Enhanced training dataset (285 examples)
164
+ - ✅ Improved architecture with deeper regression head
165
+ - ✅ Better score calibration for accountability detection
166
+ - ✅ Added contrast examples (fake vs real apologies)
167
+ - ✅ 84% accuracy (up from 40%)
168
+
169
+ ### v1 (Previous)
170
+ - Basic DARVO detection capability
171
+ - Limited training data
172
+ - Lower accuracy performance
173
+
174
+ ## Citation
175
+
176
+ If you use this model in research or professional practice, please cite:
177
+
178
+ ```bibtex
179
+ @misc{tether-darvo-regressor-v1,
180
+ title={Tether Pro DARVO Regressor: Role-Aware Detection of Manipulation Tactics},
181
+ author={SamanthaStorm},
182
+ year={2024},
183
+ howpublished={\url{https://huggingface.co/SamanthaStorm/tether-darvo-regressor-v1}},
184
+ }
185
+ ```
186
+
187
+ ## Contact & Support
188
+
189
+ For questions about integration, licensing, or professional applications:
190
+ - 📧 Enterprise: [email protected]
191
+ - 🌐 Documentation: docs.tether.ai
192
+ - 📅 Consultation: calendly.com/tether-pro
193
+
194
+ ## Related Models
195
+
196
+ Part of the **Tether Pro AI Suite**:
197
+ - 🛡️ **Boundary Health Detector**: `SamanthaStorm/healthy-boundary-predictor`
198
+ - 🎯 **Abuse Pattern Detector**: `SamanthaStorm/tether-multilabel-v6`
199
+ - 🎭 **Sentiment Analyzer**: `SamanthaStorm/tether-sentiment-v3`
200
+ - 🧩 **Fallacy Detector**: `SamanthaStorm/fallacy-detector` (coming soon)
201
+ - 🎯 **Intent Classifier**: `SamanthaStorm/intent-detector` (coming soon)
202
 
203
+ ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
204
 
205
+ *Built with ❤️ for safer communication analysis*
config.json CHANGED
@@ -1,33 +1,30 @@
1
  {
 
2
  "architectures": [
3
- "RobertaForSequenceClassification"
4
  ],
5
- "attention_probs_dropout_prob": 0.1,
6
- "bos_token_id": 0,
7
- "classifier_dropout": null,
8
- "eos_token_id": 2,
9
- "hidden_act": "gelu",
10
- "hidden_dropout_prob": 0.1,
11
- "hidden_size": 768,
12
  "id2label": {
13
  "0": "LABEL_0"
14
  },
15
  "initializer_range": 0.02,
16
- "intermediate_size": 3072,
17
  "label2id": {
18
  "LABEL_0": 0
19
  },
20
- "layer_norm_eps": 1e-05,
21
- "max_position_embeddings": 514,
22
- "model_type": "roberta",
23
- "num_attention_heads": 12,
24
- "num_hidden_layers": 12,
25
- "pad_token_id": 1,
26
- "position_embedding_type": "absolute",
27
  "problem_type": "regression",
 
 
 
 
28
  "torch_dtype": "float32",
29
- "transformers_version": "4.51.3",
30
- "type_vocab_size": 1,
31
- "use_cache": true,
32
- "vocab_size": 50265
33
  }
 
1
  {
2
+ "activation": "gelu",
3
  "architectures": [
4
+ "DistilBertForSequenceClassification"
5
  ],
6
+ "attention_dropout": 0.1,
7
+ "dim": 768,
8
+ "dropout": 0.1,
9
+ "hidden_dim": 3072,
 
 
 
10
  "id2label": {
11
  "0": "LABEL_0"
12
  },
13
  "initializer_range": 0.02,
 
14
  "label2id": {
15
  "LABEL_0": 0
16
  },
17
+ "max_position_embeddings": 512,
18
+ "model_type": "distilbert",
19
+ "n_heads": 12,
20
+ "n_layers": 6,
21
+ "pad_token_id": 0,
 
 
22
  "problem_type": "regression",
23
+ "qa_dropout": 0.1,
24
+ "seq_classif_dropout": 0.2,
25
+ "sinusoidal_pos_embds": false,
26
+ "tie_weights_": true,
27
  "torch_dtype": "float32",
28
+ "transformers_version": "4.53.0",
29
+ "vocab_size": 30522
 
 
30
  }
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:b199dbf389cbe30289fc8cc9430d4a1ca05b4a809734cb731ccd2dde6d9dca00
3
- size 498609748
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6a4e929f41e35442855d7ded918ee23f9d68a7e0fb3c7675df0728d5421c0e86
3
+ size 267829484
model_info.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "model_type": "regression",
3
+ "task": "darvo-detection",
4
+ "version": "2.0",
5
+ "performance": {
6
+ "mse": 0.043,
7
+ "mae": 0.171,
8
+ "accuracy": 0.842,
9
+ "auc": 0.881,
10
+ "r_squared": 0.665
11
+ },
12
+ "training_examples": 285,
13
+ "architecture": "distilbert-base-uncased + custom regression head"
14
+ }
special_tokens_map.json CHANGED
@@ -1,51 +1,7 @@
1
  {
2
- "bos_token": {
3
- "content": "<s>",
4
- "lstrip": false,
5
- "normalized": true,
6
- "rstrip": false,
7
- "single_word": false
8
- },
9
- "cls_token": {
10
- "content": "<s>",
11
- "lstrip": false,
12
- "normalized": true,
13
- "rstrip": false,
14
- "single_word": false
15
- },
16
- "eos_token": {
17
- "content": "</s>",
18
- "lstrip": false,
19
- "normalized": true,
20
- "rstrip": false,
21
- "single_word": false
22
- },
23
- "mask_token": {
24
- "content": "<mask>",
25
- "lstrip": true,
26
- "normalized": false,
27
- "rstrip": false,
28
- "single_word": false
29
- },
30
- "pad_token": {
31
- "content": "<pad>",
32
- "lstrip": false,
33
- "normalized": true,
34
- "rstrip": false,
35
- "single_word": false
36
- },
37
- "sep_token": {
38
- "content": "</s>",
39
- "lstrip": false,
40
- "normalized": true,
41
- "rstrip": false,
42
- "single_word": false
43
- },
44
- "unk_token": {
45
- "content": "<unk>",
46
- "lstrip": false,
47
- "normalized": true,
48
- "rstrip": false,
49
- "single_word": false
50
- }
51
  }
 
1
  {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
  }
tokenizer.json CHANGED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json CHANGED
@@ -1,65 +1,56 @@
1
  {
2
- "add_prefix_space": false,
3
  "added_tokens_decoder": {
4
  "0": {
5
- "content": "<s>",
6
  "lstrip": false,
7
- "normalized": true,
8
  "rstrip": false,
9
  "single_word": false,
10
  "special": true
11
  },
12
- "1": {
13
- "content": "<pad>",
14
  "lstrip": false,
15
- "normalized": true,
16
  "rstrip": false,
17
  "single_word": false,
18
  "special": true
19
  },
20
- "2": {
21
- "content": "</s>",
22
  "lstrip": false,
23
- "normalized": true,
24
  "rstrip": false,
25
  "single_word": false,
26
  "special": true
27
  },
28
- "3": {
29
- "content": "<unk>",
30
  "lstrip": false,
31
- "normalized": true,
32
  "rstrip": false,
33
  "single_word": false,
34
  "special": true
35
  },
36
- "50264": {
37
- "content": "<mask>",
38
- "lstrip": true,
39
  "normalized": false,
40
  "rstrip": false,
41
  "single_word": false,
42
  "special": true
43
  }
44
  },
45
- "bos_token": "<s>",
46
  "clean_up_tokenization_spaces": false,
47
- "cls_token": "<s>",
48
- "eos_token": "</s>",
49
- "errors": "replace",
50
  "extra_special_tokens": {},
51
- "mask_token": "<mask>",
52
- "max_length": 256,
53
  "model_max_length": 512,
54
- "pad_to_multiple_of": null,
55
- "pad_token": "<pad>",
56
- "pad_token_type_id": 0,
57
- "padding_side": "right",
58
- "sep_token": "</s>",
59
- "stride": 0,
60
- "tokenizer_class": "RobertaTokenizer",
61
- "trim_offsets": true,
62
- "truncation_side": "right",
63
- "truncation_strategy": "longest_first",
64
- "unk_token": "<unk>"
65
  }
 
1
  {
 
2
  "added_tokens_decoder": {
3
  "0": {
4
+ "content": "[PAD]",
5
  "lstrip": false,
6
+ "normalized": false,
7
  "rstrip": false,
8
  "single_word": false,
9
  "special": true
10
  },
11
+ "100": {
12
+ "content": "[UNK]",
13
  "lstrip": false,
14
+ "normalized": false,
15
  "rstrip": false,
16
  "single_word": false,
17
  "special": true
18
  },
19
+ "101": {
20
+ "content": "[CLS]",
21
  "lstrip": false,
22
+ "normalized": false,
23
  "rstrip": false,
24
  "single_word": false,
25
  "special": true
26
  },
27
+ "102": {
28
+ "content": "[SEP]",
29
  "lstrip": false,
30
+ "normalized": false,
31
  "rstrip": false,
32
  "single_word": false,
33
  "special": true
34
  },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
  "normalized": false,
39
  "rstrip": false,
40
  "single_word": false,
41
  "special": true
42
  }
43
  },
 
44
  "clean_up_tokenization_spaces": false,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": true,
 
47
  "extra_special_tokens": {},
48
+ "mask_token": "[MASK]",
 
49
  "model_max_length": 512,
50
+ "pad_token": "[PAD]",
51
+ "sep_token": "[SEP]",
52
+ "strip_accents": null,
53
+ "tokenize_chinese_chars": true,
54
+ "tokenizer_class": "DistilBertTokenizer",
55
+ "unk_token": "[UNK]"
 
 
 
 
 
56
  }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff