SamuelJaja commited on
Commit
1574a47
·
verified ·
1 Parent(s): 93d869b

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +83 -194
README.md CHANGED
@@ -1,202 +1,91 @@
1
  ---
2
- base_model: meta-llama/Meta-Llama-3.1-8B-Instruct
 
3
  library_name: peft
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
 
 
11
 
12
  ## Model Details
13
 
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
-
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
200
- ### Framework versions
201
-
202
- - PEFT 0.14.0
 
1
  ---
2
+ language: en
3
+ license: apache-2.0
4
  library_name: peft
5
+ tags:
6
+ - llama
7
+ - llama-3
8
+ - construction
9
+ - building-regulations
10
+ - lora
11
+ - custom construction industry dataset
12
  ---
13
 
14
+ # LLAMA3.1-8B-Instruct-Construction
 
 
 
15
 
16
+ This is a fine-tuned version of LLAMA3.1-8B-Instruct optimized for construction industry and building regulations knowledge.
17
 
18
  ## Model Details
19
 
20
+ - **Base Model:** meta-llama/Llama-3.1-8B-Instruct
21
+ - **Fine-tuning Method:** LoRA (Low-Rank Adaptation)
22
+ - **Training Data:** Custom dataset focusing on construction industry standards, building regulations, and safety requirements
23
+ - **Usage:** This model is designed to answer questions about building codes, construction best practices, and regulatory compliance
24
+
25
+ ## Example Usage
26
+
27
+ ```python
28
+ from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
29
+ from peft import PeftModel, PeftConfig
30
+ import torch
31
+ import re
32
+
33
+ # Load the adapter configuration
34
+ config = PeftConfig.from_pretrained("SamuelJaja/llama-3.1-8b-instruct-construction-lora-a100")
35
+
36
+ # Load base model with quantization
37
+ bnb_config = BitsAndBytesConfig(load_in_8bit=True)
38
+ model = AutoModelForCausalLM.from_pretrained(
39
+ config.base_model_name_or_path,
40
+ quantization_config=bnb_config,
41
+ device_map="auto"
42
+ )
43
+
44
+ # Load LoRA adapter
45
+ model = PeftModel.from_pretrained(model, "SamuelJaja/llama-3.1-8b-instruct-construction-lora-a100")
46
+
47
+ # Load tokenizer
48
+ tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
49
+ tokenizer.pad_token = tokenizer.eos_token
50
+
51
+ # Clean response function
52
+ def clean_response(text):
53
+ return re.sub(r'\[/?INST\]', '', text).strip()
54
+
55
+ # Generate text
56
+ def generate_response(prompt, temperature=0.1, max_tokens=256):
57
+ # Format properly
58
+ if not prompt.startswith("[INST]"):
59
+ formatted_prompt = f"[INST] {prompt} [/INST]"
60
+ else:
61
+ formatted_prompt = prompt
62
+
63
+ inputs = tokenizer(formatted_prompt, return_tensors="pt").to("cuda")
64
+
65
+ outputs = model.generate(
66
+ input_ids=inputs.input_ids,
67
+ attention_mask=inputs.attention_mask,
68
+ max_new_tokens=max_tokens,
69
+ temperature=temperature,
70
+ top_p=0.9,
71
+ do_sample=False
72
+ )
73
+
74
+ full_response = tokenizer.decode(outputs[0], skip_special_tokens=True)
75
+
76
+ # Remove prompt from output
77
+ if formatted_prompt in full_response:
78
+ response = full_response.replace(formatted_prompt, "").strip()
79
+ else:
80
+ response = full_response
81
+
82
+ # Clean any remaining instruction tags
83
+ response = clean_response(response)
84
+
85
+ return response
86
+
87
+ # Example use
88
+ question = "What are the main requirements for fire safety in commercial buildings?"
89
+ answer = generate_response(question)
90
+ print(answer)
91
+ ```