File size: 2,188 Bytes
859d4ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: BERT_ep8_lr4
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# BERT_ep8_lr4

This model is a fine-tuned version of [ajtamayoh/NER_EHR_Spanish_model_Mulitlingual_BERT](https://huggingface.co/ajtamayoh/NER_EHR_Spanish_model_Mulitlingual_BERT) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1754
- Precision: 0.6822
- Recall: 0.7097
- F1: 0.6957
- Accuracy: 0.9504

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-08
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log        | 1.0   | 467  | 0.2549          | 0.6812    | 0.6660 | 0.6735 | 0.9454   |
| 0.2775        | 2.0   | 934  | 0.2278          | 0.6778    | 0.6814 | 0.6796 | 0.9469   |
| 0.2438        | 3.0   | 1401 | 0.2086          | 0.6772    | 0.6935 | 0.6852 | 0.9481   |
| 0.2135        | 4.0   | 1868 | 0.1949          | 0.6780    | 0.7001 | 0.6889 | 0.9489   |
| 0.2058        | 5.0   | 2335 | 0.1856          | 0.6808    | 0.7057 | 0.6931 | 0.9496   |
| 0.1937        | 6.0   | 2802 | 0.1796          | 0.6810    | 0.7073 | 0.6939 | 0.9499   |
| 0.1818        | 7.0   | 3269 | 0.1763          | 0.6831    | 0.7097 | 0.6962 | 0.9503   |
| 0.1835        | 8.0   | 3736 | 0.1754          | 0.6822    | 0.7097 | 0.6957 | 0.9504   |


### Framework versions

- Transformers 4.27.4
- Pytorch 2.0.0+cu118
- Datasets 2.11.0
- Tokenizers 0.13.3