File size: 2,188 Bytes
859d4ae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: BERT_ep8_lr4
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# BERT_ep8_lr4
This model is a fine-tuned version of [ajtamayoh/NER_EHR_Spanish_model_Mulitlingual_BERT](https://huggingface.co/ajtamayoh/NER_EHR_Spanish_model_Mulitlingual_BERT) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1754
- Precision: 0.6822
- Recall: 0.7097
- F1: 0.6957
- Accuracy: 0.9504
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-08
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 467 | 0.2549 | 0.6812 | 0.6660 | 0.6735 | 0.9454 |
| 0.2775 | 2.0 | 934 | 0.2278 | 0.6778 | 0.6814 | 0.6796 | 0.9469 |
| 0.2438 | 3.0 | 1401 | 0.2086 | 0.6772 | 0.6935 | 0.6852 | 0.9481 |
| 0.2135 | 4.0 | 1868 | 0.1949 | 0.6780 | 0.7001 | 0.6889 | 0.9489 |
| 0.2058 | 5.0 | 2335 | 0.1856 | 0.6808 | 0.7057 | 0.6931 | 0.9496 |
| 0.1937 | 6.0 | 2802 | 0.1796 | 0.6810 | 0.7073 | 0.6939 | 0.9499 |
| 0.1818 | 7.0 | 3269 | 0.1763 | 0.6831 | 0.7097 | 0.6962 | 0.9503 |
| 0.1835 | 8.0 | 3736 | 0.1754 | 0.6822 | 0.7097 | 0.6957 | 0.9504 |
### Framework versions
- Transformers 4.27.4
- Pytorch 2.0.0+cu118
- Datasets 2.11.0
- Tokenizers 0.13.3
|