Image Classification
Transformers
Safetensors
cetaceanet
biology
biodiversity
custom_code
cetacean-classifier / configuration_cetacean_classifier.py
MalloryWittwerEPFL's picture
Upload model
6257083 verified
raw
history blame
1.22 kB
from transformers import PretrainedConfig
from typing import List
class CetaceanClassifierConfig(PretrainedConfig):
model_type = "cetaceanet"
def __init__(
self,
# block_type="bottleneck",
# layers: List[int] = [3, 4, 6, 3],
# num_classes: int = 1000,
# input_channels: int = 3,
# cardinality: int = 1,
# base_width: int = 64,
# stem_width: int = 64,
# stem_type: str = "",
# avg_down: bool = False,
**kwargs,
):
# if block_type not in ["basic", "bottleneck"]:
# raise ValueError(f"`block_type` must be 'basic' or bottleneck', got {block_type}.")
# if stem_type not in ["", "deep", "deep-tiered"]:
# raise ValueError(f"`stem_type` must be '', 'deep' or 'deep-tiered', got {stem_type}.")
# self.block_type = block_type
# self.layers = layers
# self.num_classes = num_classes
# self.input_channels = input_channels
# self.cardinality = cardinality
# self.base_width = base_width
# self.stem_width = stem_width
# self.stem_type = stem_type
# self.avg_down = avg_down
super().__init__(**kwargs)