from transformers import PretrainedConfig from typing import List class CetaceanClassifierConfig(PretrainedConfig): model_type = "cetaceanet" def __init__( self, # block_type="bottleneck", # layers: List[int] = [3, 4, 6, 3], # num_classes: int = 1000, # input_channels: int = 3, # cardinality: int = 1, # base_width: int = 64, # stem_width: int = 64, # stem_type: str = "", # avg_down: bool = False, **kwargs, ): # if block_type not in ["basic", "bottleneck"]: # raise ValueError(f"`block_type` must be 'basic' or bottleneck', got {block_type}.") # if stem_type not in ["", "deep", "deep-tiered"]: # raise ValueError(f"`stem_type` must be '', 'deep' or 'deep-tiered', got {stem_type}.") # self.block_type = block_type # self.layers = layers # self.num_classes = num_classes # self.input_channels = input_channels # self.cardinality = cardinality # self.base_width = base_width # self.stem_width = stem_width # self.stem_type = stem_type # self.avg_down = avg_down super().__init__(**kwargs)