--- library_name: transformers tags: [] --- # Model Card for Model ID ## Model Details ### Model Description This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** Sefika Efeoglu - **Model type:** text-to-text - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** https://huggingface.co/google/flan-t5-base ## Uses ```python import json import torch from transformers import AutoTokenizer from transformers import AutoModelForCausalLM from datetime import datetime from transformers import T5Tokenizer, T5ForConditionalGeneration tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-base") model_id = "Sefika/semeval_base_1" model = T5ForConditionalGeneration.from_pretrained(model_id, device_map="auto", load_in_8bit=False, torch_dtype=torch.float16) prompt = """Example Sentence:The purpose of the audit was to report on the financial statements.\n"""+\ """Sentence: Query Sentence:The most common audits were about waste and recycling.\n"""+\ """What is the relation type between e1: audits. and e2 : waste. according to given relation types below in the sentence?\n"""+\ """Relation types: Relation types: Cause-Effect(e2,e1), Content-Container(e1,e2), Member-Collection(e1,e2), Instrument-Agency(e1,e2), Product-Producer(e2,e1), Member-Collection(e2,e1), Message-Topic(e1,e2), Entity-Origin(e2,e1), Message-Topic(e2,e1), Instrument-Agency(e2,e1), Content-Container(e2,e1), Product-Producer(e1,e2), Entity-Origin(e1,e2), Component-Whole(e1,e2), Entity-Destination(e1,e2), Other, Cause-Effect(e1,e2), Component-Whole(e2,e1), Entity-Destination(e2,e1). \n""" inputs = self.tokenizer(prompt, add_special_tokens=True, max_length=526,return_tensors="pt").input_ids.to("cuda") outputs = self.model.generate(inputs, max_new_tokens=length, pad_token_id=self.tokenizer.eos_token_id) response = self.tokenizer.batch_decode(outputs, skip_special_tokens=True) print(response[0]) #"Cause-Effect(e1,e2)" ``` ## Training Details ### Training Data semeval-2010-task8 [More Information Needed] ### Training Procedure 5 fold cross validation with sentence and relation types. Input is sentence and the output is relation types #### Training Hyperparameters Epoch:5, BS:16 and others are default. #### Hardware Colab Pro+ A100. ## Citation Efeoglu, Sefika, and Adrian Paschke. "Retrieval-Augmented Generation-based Relation Extraction." arXiv preprint arXiv:2404.13397 (2024). https://www.semantic-web-journal.net/system/files/swj3810.pdf