--- base_model: openai/whisper-small library_name: transformers license: apache-2.0 metrics: - wer tags: - generated_from_trainer model-index: - name: whisper-small-hyper-tuned-v2 results: [] --- # whisper-small-hyper-tuned-v2 This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2138 - Wer: 0.3859 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 0.2719 | 0.0330 | 100 | 0.3551 | 0.5211 | | 0.2793 | 0.0660 | 200 | 0.3262 | 0.4921 | | 0.2831 | 0.0990 | 300 | 0.3306 | 0.4927 | | 0.2775 | 0.1320 | 400 | 0.3631 | 0.5363 | | 0.2849 | 0.1650 | 500 | 0.3488 | 0.5040 | | 0.2692 | 0.1980 | 600 | 0.3202 | 0.4967 | | 0.2528 | 0.2309 | 700 | 0.2838 | 0.4400 | | 0.2155 | 0.2639 | 800 | 0.2489 | 0.4116 | | 0.1929 | 0.2969 | 900 | 0.2220 | 0.3912 | | 0.1709 | 0.3299 | 1000 | 0.2138 | 0.3859 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.1.0+cu118 - Datasets 3.0.1 - Tokenizers 0.20.0