--- base_model: Sekiraw/whisper-small-hyper-tuned-v2 library_name: transformers license: apache-2.0 metrics: - wer tags: - generated_from_trainer model-index: - name: whisper-small-hyper-tuned-v3 results: [] --- # whisper-small-hyper-tuned-v3 This model is a fine-tuned version of [Sekiraw/whisper-small-hyper-tuned-v2](https://huggingface.co/Sekiraw/whisper-small-hyper-tuned-v2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2305 - Wer: 0.3964 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 0.1243 | 0.0330 | 100 | 0.2124 | 0.3780 | | 0.1045 | 0.0660 | 200 | 0.2246 | 0.3971 | | 0.0936 | 0.0990 | 300 | 0.2496 | 0.4044 | | 0.0883 | 0.1320 | 400 | 0.2906 | 0.4809 | | 0.0964 | 0.1650 | 500 | 0.3260 | 0.4525 | | 0.0974 | 0.1980 | 600 | 0.3168 | 0.4578 | | 4.0232 | 0.2309 | 700 | 3.4281 | 1.0 | | 2.0352 | 0.2639 | 800 | 0.3124 | 0.4796 | | 0.1273 | 0.2969 | 900 | 0.2447 | 0.4228 | | 0.1489 | 0.3299 | 1000 | 0.2305 | 0.3964 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.1.0+cu118 - Datasets 3.0.1 - Tokenizers 0.20.0