nielsr HF Staff commited on
Commit
39c9a56
Β·
verified Β·
1 Parent(s): ce09b93

Improve model card: Add model abstract and minor formatting improvements

Browse files

This PR improves the model card by adding a missing model abstract from the paper and making minor formatting adjustments for better readability.

Files changed (1) hide show
  1. README.md +6 -15
README.md CHANGED
@@ -2,29 +2,27 @@
2
  language:
3
  - vi
4
  library_name: transformers
 
 
5
  tags:
6
  - SemViQA
7
  - three-class-classification
8
  - fact-checking
9
- pipeline_tag: text-classification
10
- license: mit
11
  ---
12
 
13
  # SemViQA-TC: Vietnamese Three-class Classification for Claim Verification
14
 
15
  ## Model Description
16
 
17
- **SemViQA-TC** is one of the key components of the **SemViQA** system, designed for **three-class classification** in Vietnamese fact-checking. This model classifies a given claim into one of three categories: **SUPPORTED**, **REFUTED**, or **NOT ENOUGH INFORMATION (NEI)** based on retrieved evidence.
18
 
19
- ### **Model Information**
20
  - **Developed by:** [SemViQA Research Team](https://huggingface.co/SemViQA)
21
  - **Fine-tuned model:** [Ernie-M](https://huggingface.co/MoritzLaurer/ernie-m-large-mnli-xnli)
22
  - **Supported Language:** Vietnamese
23
  - **Task:** Three-Class Classification (Fact Verification)
24
  - **Dataset:** [ViWikiFC](https://arxiv.org/abs/2405.07615)
25
 
26
- SemViQA-TC serves as the **first step in the two-step classification process** of the SemViQA system. It initially categorizes claims into three classes: **SUPPORTED, REFUTED, or NEI**. For claims classified as **SUPPORTED** or **REFUTED**, a secondary **binary classification model (SemViQA-BC)** further refines the prediction. This hierarchical classification strategy enhances the accuracy of fact verification.
27
-
28
  ## Usage Example
29
 
30
  Direct Model Usage
@@ -70,7 +68,7 @@ for i, (label, prob) in enumerate(zip(labels, probabilities.tolist()), start=1):
70
  # 3) REFUTED 0.9998
71
  ```
72
 
73
- ## **Citation**
74
 
75
  If you use **SemViQA-TC** in your research, please cite:
76
 
@@ -87,11 +85,4 @@ If you use **SemViQA-TC** in your research, please cite:
87
  ```
88
 
89
  πŸ”— **Paper Link:** [SemViQA on arXiv](https://arxiv.org/abs/2503.00955)
90
- πŸ”— **Source Code:** [GitHub - SemViQA](https://github.com/DAVID-NGUYEN-S16/SemViQA)
91
-
92
- ## About
93
-
94
- *Built by Dien X. Tran*
95
- [![LinkedIn](https://img.shields.io/badge/LinkedIn-Profile-blue?logo=linkedin)](https://www.linkedin.com/in/xndien2004/)
96
- For more details, visit the project repository.
97
- [![GitHub stars](https://img.shields.io/github/stars/DAVID-NGUYEN-S16/SemViQA?style=social)](https://github.com/DAVID-NGUYEN-S16/SemViQA)
 
2
  language:
3
  - vi
4
  library_name: transformers
5
+ license: mit
6
+ pipeline_tag: text-classification
7
  tags:
8
  - SemViQA
9
  - three-class-classification
10
  - fact-checking
 
 
11
  ---
12
 
13
  # SemViQA-TC: Vietnamese Three-class Classification for Claim Verification
14
 
15
  ## Model Description
16
 
17
+ **SemViQA-TC** is one of the key components of the **SemViQA** system, designed for **three-class classification** in Vietnamese fact-checking. This model classifies a given claim into one of three categories: **SUPPORTED**, **REFUTED**, or **NOT ENOUGH INFORMATION (NEI)** based on retrieved evidence. It serves as the first step in the SemViQA system's two-step classification process. It initially categorizes claims, and for those classified as SUPPORTED or REFUTED, a secondary binary classification model (SemViQA-BC) further refines the prediction. This hierarchical approach enhances fact-checking accuracy.
18
 
19
+ ### Model Information
20
  - **Developed by:** [SemViQA Research Team](https://huggingface.co/SemViQA)
21
  - **Fine-tuned model:** [Ernie-M](https://huggingface.co/MoritzLaurer/ernie-m-large-mnli-xnli)
22
  - **Supported Language:** Vietnamese
23
  - **Task:** Three-Class Classification (Fact Verification)
24
  - **Dataset:** [ViWikiFC](https://arxiv.org/abs/2405.07615)
25
 
 
 
26
  ## Usage Example
27
 
28
  Direct Model Usage
 
68
  # 3) REFUTED 0.9998
69
  ```
70
 
71
+ ## Citation
72
 
73
  If you use **SemViQA-TC** in your research, please cite:
74
 
 
85
  ```
86
 
87
  πŸ”— **Paper Link:** [SemViQA on arXiv](https://arxiv.org/abs/2503.00955)
88
+ πŸ”— **Source Code:** [GitHub - SemViQA](https://github.com/DAVID-NGUYEN-S16/SemViQA)