Update README.md
Browse files
README.md
CHANGED
|
@@ -5,4 +5,76 @@ datasets:
|
|
| 5 |
- Senqiao/VisionThink-General-Val
|
| 6 |
base_model:
|
| 7 |
- Qwen/Qwen2.5-VL-7B-Instruct
|
| 8 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
- Senqiao/VisionThink-General-Val
|
| 6 |
base_model:
|
| 7 |
- Qwen/Qwen2.5-VL-7B-Instruct
|
| 8 |
+
---
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
<p align="center" width="100%">
|
| 12 |
+
<img src="https://raw.githubusercontent.com/dvlab-research/VisionThink/main/files/VisionThink.jpg" alt="Stanford-Alpaca" style="width: 100%; min-width: 300px; display: block; margin: auto;">
|
| 13 |
+
</p>
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
# VisionThink: Smart and Efficient Vision Language Model via Reinforcement Learning
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
[](https://arxiv.org/abs/2507.13348)
|
| 20 |
+
[](https://huggingface.co/papers/2507.13348)
|
| 21 |
+
[](https://github.com/dvlab-research/VisionThink/blob/main/LICENSE)
|
| 22 |
+
<a href='https://huggingface.co/collections/Senqiao/visionthink-6878d839fae02a079c9c7bfe'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Data%20Model-Collection-red'></a>
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
## Senqiao/VisionThink-General
|
| 26 |
+
|
| 27 |
+
This model is trained via reinforcement learning using [`Senqiao/VisionThink-General-Train`](https://huggingface.co/datasets/Senqiao/VisionThink-General-Train), demonstrating enhanced performance on general VQA tasks.
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
**VisionThink: Smart and Efficient Vision Language Model via Reinforcement Learning [[Paper](https://arxiv.org/abs/2507.13348)]** <br />
|
| 31 |
+
[Senqiao Yang](https://scholar.google.com/citations?user=NcJc-RwAAAAJ),
|
| 32 |
+
[Junyi Li](https://scholar.google.com/citations?hl=zh-CN&user=zQ0P3JAAAAAJ),
|
| 33 |
+
[Xin Lai](https://scholar.google.com/citations?user=tqNDPA4AAAAJ),
|
| 34 |
+
[Bei Yu](https://scholar.google.com/citations?user=tGneTm4AAAAJ),
|
| 35 |
+
[Hengshuang Zhao](https://scholar.google.com/citations?user=4uE10I0AAAAJ),
|
| 36 |
+
[Jiaya Jia](https://scholar.google.com/citations?user=XPAkzTEAAAAJ)<br />
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
## Highlights
|
| 40 |
+
<p align="center" width="80%">
|
| 41 |
+
<img src="https://raw.githubusercontent.com/dvlab-research/VisionThink/main/files/Framework.jpg" alt="Stanford-Alpaca" style="width: 80%; min-width: 300px; display: block; margin: auto;">
|
| 42 |
+
</p>
|
| 43 |
+
|
| 44 |
+
1. Our VisionThink leverages reinforcement learning to **autonomously** learn whether to reduce visual tokens. Compared to traditional efficient VLM approaches, our method achieves significant improvements on **fine-grained** benchmarks, such as those involving OCR-related tasks.
|
| 45 |
+
|
| 46 |
+
2. VisionThink improves performance on **General VQA** tasks while reducing visual tokens by **50%**, achieving **102%** of the original model’s performance across nine benchmarks.
|
| 47 |
+
|
| 48 |
+
3. VisionThink achieves strong performance and efficiency by simply resizing input images to reduce visual tokens. We hope this inspires further research into **Efficient Reasoning Vision Language Models**.
|
| 49 |
+
|
| 50 |
+
## Video
|
| 51 |
+
<p align="center" width="85%">
|
| 52 |
+
<a href="https://www.youtube.com/watch?v=DGjbFbA5mBw" target="_blank">
|
| 53 |
+
<img src="https://raw.githubusercontent.com/dvlab-research/VisionThink/main/files/Video.png" alt="Stanford-Alpaca" style="width: 70%; min-width: 300px; display: block; margin: auto;">
|
| 54 |
+
</a>
|
| 55 |
+
</p>
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
## Citation
|
| 60 |
+
|
| 61 |
+
If you find this project useful in your research, please consider citing:
|
| 62 |
+
|
| 63 |
+
> This work is highly motivated by our previous effort on efficient VLMs, [**VisionZip**](https://github.com/dvlab-research/VisionZip), which explores token compression for faster inference.
|
| 64 |
+
|
| 65 |
+
```
|
| 66 |
+
@article{yang2025visionthink,
|
| 67 |
+
title={VisionThink: Smart and Efficient Vision Language Model via Reinforcement Learning},
|
| 68 |
+
author={Yang, Senqiao and Li, Junyi and Lai, Xin and Yu, Bei and Zhao, Hengshuang and Jia, Jiaya},
|
| 69 |
+
journal={arXiv preprint arXiv:2507.13348},
|
| 70 |
+
year={2025}
|
| 71 |
+
}
|
| 72 |
+
@article{yang2024visionzip,
|
| 73 |
+
title={VisionZip: Longer is Better but Not Necessary in Vision Language Models},
|
| 74 |
+
author={Yang, Senqiao and Chen, Yukang and Tian, Zhuotao and Wang, Chengyao and Li, Jingyao and Yu, Bei and Jia, Jiaya},
|
| 75 |
+
journal={arXiv preprint arXiv:2412.04467},
|
| 76 |
+
year={2024}
|
| 77 |
+
}
|
| 78 |
+
```
|
| 79 |
+
|
| 80 |
+
|