Update README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,28 @@
|
|
| 1 |
---
|
| 2 |
license: apache-2.0
|
|
|
|
|
|
|
|
|
|
| 3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
license: apache-2.0
|
| 3 |
+
datasets:
|
| 4 |
+
- Sentdex/WSB-003.004
|
| 5 |
+
pipeline_tag: text-generation
|
| 6 |
---
|
| 7 |
+
|
| 8 |
+
Probably don't use this model, I'm just tinkering, but it's a multi-turn, multi-speaker model attempt trained from /r/wallstreetbets data that you can find: https://huggingface.co/datasets/Sentdex/WSB-003.004
|
| 9 |
+
|
| 10 |
+
```py
|
| 11 |
+
#https://huggingface.co/docs/peft/quicktour
|
| 12 |
+
|
| 13 |
+
from peft import AutoPeftModelForCausalLM
|
| 14 |
+
from transformers import AutoTokenizer
|
| 15 |
+
import torch
|
| 16 |
+
|
| 17 |
+
model = AutoPeftModelForCausalLM.from_pretrained("Sentdex/Walls1337bot-Llama2-7B-003.004.400")
|
| 18 |
+
tokenizer = AutoTokenizer.from_pretrained("NousResearch/Llama-2-7b-chat-hf")
|
| 19 |
+
|
| 20 |
+
model = model.to("cuda")
|
| 21 |
+
model.eval()
|
| 22 |
+
|
| 23 |
+
prompt = "Your text here."
|
| 24 |
+
formatted_prompt = f"### BEGIN CONVERSATION ###\n\n## Speaker_0: ##\n{prompt}\n\n## Walls1337bot: ##\n"
|
| 25 |
+
inputs = tokenizer(formatted_prompt, return_tensors="pt")
|
| 26 |
+
outputs = model.generate(input_ids=inputs["input_ids"].to("cuda"), max_new_tokens=128)
|
| 27 |
+
print(tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True)[0])
|
| 28 |
+
```
|