SeppeV commited on
Commit
ee983f9
·
verified ·
1 Parent(s): a33b35a

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,386 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:8522
8
+ - loss:DenoisingAutoEncoderLoss
9
+ base_model: sentence-transformers/all-roberta-large-v1
10
+ widget:
11
+ - source_sentence: This . A engineer and go a trip walking the when a The physicist
12
+ the distance of the the drop bullet his rifle fires the deer to . engineer his
13
+ . to account for he rifle licks finger the speed and of fires deer 5 right . statistician
14
+ "got!"
15
+ sentences:
16
+ - 'This is a mean joke.
17
+
18
+ A physicist, an engineer, and a statistician go on a hunting trip, they are walking
19
+ through the woods when they spot a deer in a clearing. The physicist calculates
20
+ the distance of the target, the velocity and drop of the bullet, adjusts his rifle
21
+ and fires, missing the deer 5 feet to the left. The engineer rolls his eyes. ''You
22
+ forgot to account for wind. Give it here'', he snatches the rifle, licks his finger
23
+ and estimates the speed and direction of the wind and fires, missing the deer
24
+ 5 feet to the right. Suddenly, the statistician claps his hands and yells "We
25
+ got him!"'
26
+ - 'While driving to work, robbers jumped into my car and stole everything.
27
+
28
+ They were pirates of the car I be in.'
29
+ - Driving and trying to read twitter, I just ran over a poodle. Unfortunately I
30
+ drive a Yaris. My car got a dent and the poodle got annoyed.
31
+ - source_sentence: ': the love?? They.'
32
+ sentences:
33
+ - I have a super hero joke Fantastic four
34
+ - 'Monroe: What did the trailer and the truck do after they fell in love?
35
+
36
+ Amanda: What?
37
+
38
+ Monroe: They got hitched.'
39
+ - 'JOSIAH: What is a lawn mower’s favorite kind of music?
40
+
41
+ TIM: I’m not sure.
42
+
43
+ JOSIAH: Bluegrass.'
44
+ - source_sentence: 'JAYDEN What panda ’ s: JAYDEN: Bam-BOO!'
45
+ sentences:
46
+ - BlackBerry and Apple have come together to create a something for ladies who have
47
+ trouble listening. It's been called the Black-i.
48
+ - Where do you put the Duke? In the duke box!
49
+ - 'JAYDEN: What is a panda’s favorite Halloween food?
50
+
51
+ CAYDEN: What?
52
+
53
+ JAYDEN: Bam-BOO!'
54
+ - source_sentence: we should be the time expand language, not it instead of 'probababably
55
+ sentences:
56
+ - '"Don''t dip your pen in company ink." - HR training seminar explaining why I
57
+ shouldn''t sleep with the receptionist...I think.'
58
+ - we should be using all the time technology frees up to expand language, not shorten
59
+ it. instead of 'prolly' try 'probababably.'
60
+ - If you like internet jokes, you should see my online bank account.
61
+ - source_sentence: yoga What the to when she him Nahimastay
62
+ sentences:
63
+ - 'CRESENCIO: Why do turkeys eat so little?
64
+
65
+ MAX: I don’t know.
66
+
67
+ CRESENCIO: Because they are always stuffed.'
68
+ - I'm really sick of making my dog a birthday cake every 52 days.
69
+ - Redneck yoga. What did the redneck say to the yoga instructor when she asked him
70
+ to leave the class? Nahimastay
71
+ pipeline_tag: sentence-similarity
72
+ library_name: sentence-transformers
73
+ ---
74
+
75
+ # SentenceTransformer based on sentence-transformers/all-roberta-large-v1
76
+
77
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-roberta-large-v1](https://huggingface.co/sentence-transformers/all-roberta-large-v1). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
78
+
79
+ ## Model Details
80
+
81
+ ### Model Description
82
+ - **Model Type:** Sentence Transformer
83
+ - **Base model:** [sentence-transformers/all-roberta-large-v1](https://huggingface.co/sentence-transformers/all-roberta-large-v1) <!-- at revision cf74d8acd4f198de950bf004b262e6accfed5d2c -->
84
+ - **Maximum Sequence Length:** 512 tokens
85
+ - **Output Dimensionality:** 1024 dimensions
86
+ - **Similarity Function:** Cosine Similarity
87
+ <!-- - **Training Dataset:** Unknown -->
88
+ <!-- - **Language:** Unknown -->
89
+ <!-- - **License:** Unknown -->
90
+
91
+ ### Model Sources
92
+
93
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
94
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
95
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
96
+
97
+ ### Full Model Architecture
98
+
99
+ ```
100
+ SentenceTransformer(
101
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel
102
+ (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
103
+ )
104
+ ```
105
+
106
+ ## Usage
107
+
108
+ ### Direct Usage (Sentence Transformers)
109
+
110
+ First install the Sentence Transformers library:
111
+
112
+ ```bash
113
+ pip install -U sentence-transformers
114
+ ```
115
+
116
+ Then you can load this model and run inference.
117
+ ```python
118
+ from sentence_transformers import SentenceTransformer
119
+
120
+ # Download from the 🤗 Hub
121
+ model = SentenceTransformer("SeppeV/roberta_TSDAE")
122
+ # Run inference
123
+ sentences = [
124
+ 'yoga What the to when she him Nahimastay',
125
+ 'Redneck yoga. What did the redneck say to the yoga instructor when she asked him to leave the class? Nahimastay',
126
+ "I'm really sick of making my dog a birthday cake every 52 days.",
127
+ ]
128
+ embeddings = model.encode(sentences)
129
+ print(embeddings.shape)
130
+ # [3, 1024]
131
+
132
+ # Get the similarity scores for the embeddings
133
+ similarities = model.similarity(embeddings, embeddings)
134
+ print(similarities.shape)
135
+ # [3, 3]
136
+ ```
137
+
138
+ <!--
139
+ ### Direct Usage (Transformers)
140
+
141
+ <details><summary>Click to see the direct usage in Transformers</summary>
142
+
143
+ </details>
144
+ -->
145
+
146
+ <!--
147
+ ### Downstream Usage (Sentence Transformers)
148
+
149
+ You can finetune this model on your own dataset.
150
+
151
+ <details><summary>Click to expand</summary>
152
+
153
+ </details>
154
+ -->
155
+
156
+ <!--
157
+ ### Out-of-Scope Use
158
+
159
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
160
+ -->
161
+
162
+ <!--
163
+ ## Bias, Risks and Limitations
164
+
165
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
166
+ -->
167
+
168
+ <!--
169
+ ### Recommendations
170
+
171
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
172
+ -->
173
+
174
+ ## Training Details
175
+
176
+ ### Training Dataset
177
+
178
+ #### Unnamed Dataset
179
+
180
+ * Size: 8,522 training samples
181
+ * Columns: <code>sentence_0</code> and <code>sentence_1</code>
182
+ * Approximate statistics based on the first 1000 samples:
183
+ | | sentence_0 | sentence_1 |
184
+ |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
185
+ | type | string | string |
186
+ | details | <ul><li>min: 3 tokens</li><li>mean: 13.95 tokens</li><li>max: 83 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 33.15 tokens</li><li>max: 231 tokens</li></ul> |
187
+ * Samples:
188
+ | sentence_0 | sentence_1 |
189
+ |:-------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
190
+ | <code>.... recently changed sound of my clock to Justin Bieber Baby" I wake up 5 earlier do to to it.</code> | <code>Justin Bieber.... I have recently changed the sound of my alarm clock to "Justin Bieber - Baby". Now I wake up 5 minutes earlier every day, so I don't have to listen to it.</code> |
191
+ | <code>A got yesterday . joke be funny it had a tit</code> | <code>A woman got breast implants made of wood yesterday.<br>This joke would be funny if it had a punchline<br><br>Wooden tit</code> |
192
+ | <code>TIL unvaccinated children are less likely autistic Because they more</code> | <code>TIL unvaccinated children are less likely to be autistic<br>Because they are more likely to be dead</code> |
193
+ * Loss: [<code>DenoisingAutoEncoderLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#denoisingautoencoderloss)
194
+
195
+ ### Training Hyperparameters
196
+ #### Non-Default Hyperparameters
197
+
198
+ - `num_train_epochs`: 1
199
+ - `multi_dataset_batch_sampler`: round_robin
200
+
201
+ #### All Hyperparameters
202
+ <details><summary>Click to expand</summary>
203
+
204
+ - `overwrite_output_dir`: False
205
+ - `do_predict`: False
206
+ - `eval_strategy`: no
207
+ - `prediction_loss_only`: True
208
+ - `per_device_train_batch_size`: 8
209
+ - `per_device_eval_batch_size`: 8
210
+ - `per_gpu_train_batch_size`: None
211
+ - `per_gpu_eval_batch_size`: None
212
+ - `gradient_accumulation_steps`: 1
213
+ - `eval_accumulation_steps`: None
214
+ - `torch_empty_cache_steps`: None
215
+ - `learning_rate`: 5e-05
216
+ - `weight_decay`: 0.0
217
+ - `adam_beta1`: 0.9
218
+ - `adam_beta2`: 0.999
219
+ - `adam_epsilon`: 1e-08
220
+ - `max_grad_norm`: 1
221
+ - `num_train_epochs`: 1
222
+ - `max_steps`: -1
223
+ - `lr_scheduler_type`: linear
224
+ - `lr_scheduler_kwargs`: {}
225
+ - `warmup_ratio`: 0.0
226
+ - `warmup_steps`: 0
227
+ - `log_level`: passive
228
+ - `log_level_replica`: warning
229
+ - `log_on_each_node`: True
230
+ - `logging_nan_inf_filter`: True
231
+ - `save_safetensors`: True
232
+ - `save_on_each_node`: False
233
+ - `save_only_model`: False
234
+ - `restore_callback_states_from_checkpoint`: False
235
+ - `no_cuda`: False
236
+ - `use_cpu`: False
237
+ - `use_mps_device`: False
238
+ - `seed`: 42
239
+ - `data_seed`: None
240
+ - `jit_mode_eval`: False
241
+ - `use_ipex`: False
242
+ - `bf16`: False
243
+ - `fp16`: False
244
+ - `fp16_opt_level`: O1
245
+ - `half_precision_backend`: auto
246
+ - `bf16_full_eval`: False
247
+ - `fp16_full_eval`: False
248
+ - `tf32`: None
249
+ - `local_rank`: 0
250
+ - `ddp_backend`: None
251
+ - `tpu_num_cores`: None
252
+ - `tpu_metrics_debug`: False
253
+ - `debug`: []
254
+ - `dataloader_drop_last`: False
255
+ - `dataloader_num_workers`: 0
256
+ - `dataloader_prefetch_factor`: None
257
+ - `past_index`: -1
258
+ - `disable_tqdm`: False
259
+ - `remove_unused_columns`: True
260
+ - `label_names`: None
261
+ - `load_best_model_at_end`: False
262
+ - `ignore_data_skip`: False
263
+ - `fsdp`: []
264
+ - `fsdp_min_num_params`: 0
265
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
266
+ - `fsdp_transformer_layer_cls_to_wrap`: None
267
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
268
+ - `deepspeed`: None
269
+ - `label_smoothing_factor`: 0.0
270
+ - `optim`: adamw_torch
271
+ - `optim_args`: None
272
+ - `adafactor`: False
273
+ - `group_by_length`: False
274
+ - `length_column_name`: length
275
+ - `ddp_find_unused_parameters`: None
276
+ - `ddp_bucket_cap_mb`: None
277
+ - `ddp_broadcast_buffers`: False
278
+ - `dataloader_pin_memory`: True
279
+ - `dataloader_persistent_workers`: False
280
+ - `skip_memory_metrics`: True
281
+ - `use_legacy_prediction_loop`: False
282
+ - `push_to_hub`: False
283
+ - `resume_from_checkpoint`: None
284
+ - `hub_model_id`: None
285
+ - `hub_strategy`: every_save
286
+ - `hub_private_repo`: None
287
+ - `hub_always_push`: False
288
+ - `gradient_checkpointing`: False
289
+ - `gradient_checkpointing_kwargs`: None
290
+ - `include_inputs_for_metrics`: False
291
+ - `include_for_metrics`: []
292
+ - `eval_do_concat_batches`: True
293
+ - `fp16_backend`: auto
294
+ - `push_to_hub_model_id`: None
295
+ - `push_to_hub_organization`: None
296
+ - `mp_parameters`:
297
+ - `auto_find_batch_size`: False
298
+ - `full_determinism`: False
299
+ - `torchdynamo`: None
300
+ - `ray_scope`: last
301
+ - `ddp_timeout`: 1800
302
+ - `torch_compile`: False
303
+ - `torch_compile_backend`: None
304
+ - `torch_compile_mode`: None
305
+ - `dispatch_batches`: None
306
+ - `split_batches`: None
307
+ - `include_tokens_per_second`: False
308
+ - `include_num_input_tokens_seen`: False
309
+ - `neftune_noise_alpha`: None
310
+ - `optim_target_modules`: None
311
+ - `batch_eval_metrics`: False
312
+ - `eval_on_start`: False
313
+ - `use_liger_kernel`: False
314
+ - `eval_use_gather_object`: False
315
+ - `average_tokens_across_devices`: False
316
+ - `prompts`: None
317
+ - `batch_sampler`: batch_sampler
318
+ - `multi_dataset_batch_sampler`: round_robin
319
+
320
+ </details>
321
+
322
+ ### Training Logs
323
+ | Epoch | Step | Training Loss |
324
+ |:------:|:----:|:-------------:|
325
+ | 0.4690 | 500 | 7.4675 |
326
+ | 0.9381 | 1000 | 6.8434 |
327
+
328
+
329
+ ### Framework Versions
330
+ - Python: 3.10.16
331
+ - Sentence Transformers: 3.4.1
332
+ - Transformers: 4.49.0
333
+ - PyTorch: 2.6.0
334
+ - Accelerate: 1.4.0
335
+ - Datasets: 3.3.2
336
+ - Tokenizers: 0.21.0
337
+
338
+ ## Citation
339
+
340
+ ### BibTeX
341
+
342
+ #### Sentence Transformers
343
+ ```bibtex
344
+ @inproceedings{reimers-2019-sentence-bert,
345
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
346
+ author = "Reimers, Nils and Gurevych, Iryna",
347
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
348
+ month = "11",
349
+ year = "2019",
350
+ publisher = "Association for Computational Linguistics",
351
+ url = "https://arxiv.org/abs/1908.10084",
352
+ }
353
+ ```
354
+
355
+ #### DenoisingAutoEncoderLoss
356
+ ```bibtex
357
+ @inproceedings{wang-2021-TSDAE,
358
+ title = "TSDAE: Using Transformer-based Sequential Denoising Auto-Encoderfor Unsupervised Sentence Embedding Learning",
359
+ author = "Wang, Kexin and Reimers, Nils and Gurevych, Iryna",
360
+ booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021",
361
+ month = nov,
362
+ year = "2021",
363
+ address = "Punta Cana, Dominican Republic",
364
+ publisher = "Association for Computational Linguistics",
365
+ pages = "671--688",
366
+ url = "https://arxiv.org/abs/2104.06979",
367
+ }
368
+ ```
369
+
370
+ <!--
371
+ ## Glossary
372
+
373
+ *Clearly define terms in order to be accessible across audiences.*
374
+ -->
375
+
376
+ <!--
377
+ ## Model Card Authors
378
+
379
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
380
+ -->
381
+
382
+ <!--
383
+ ## Model Card Contact
384
+
385
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
386
+ -->
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/all-roberta-large-v1",
3
+ "architectures": [
4
+ "RobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 1024,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 4096,
16
+ "layer_norm_eps": 1e-05,
17
+ "max_position_embeddings": 514,
18
+ "model_type": "roberta",
19
+ "num_attention_heads": 16,
20
+ "num_hidden_layers": 24,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "torch_dtype": "float32",
24
+ "transformers_version": "4.49.0",
25
+ "type_vocab_size": 1,
26
+ "use_cache": true,
27
+ "vocab_size": 50265
28
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.4.1",
4
+ "transformers": "4.49.0",
5
+ "pytorch": "2.6.0"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f4ab4d620bc68056d8a1deefb3dcee6e14157c0f66010546064b3175c10e9c3a
3
+ size 1421483904
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "0": {
5
+ "content": "<s>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "1": {
13
+ "content": "<pad>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "2": {
21
+ "content": "</s>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "3": {
29
+ "content": "<unk>",
30
+ "lstrip": false,
31
+ "normalized": false,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "50264": {
37
+ "content": "<mask>",
38
+ "lstrip": true,
39
+ "normalized": false,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ }
44
+ },
45
+ "bos_token": "<s>",
46
+ "clean_up_tokenization_spaces": false,
47
+ "cls_token": "<s>",
48
+ "eos_token": "</s>",
49
+ "errors": "replace",
50
+ "extra_special_tokens": {},
51
+ "mask_token": "<mask>",
52
+ "max_length": 128,
53
+ "model_max_length": 512,
54
+ "pad_to_multiple_of": null,
55
+ "pad_token": "<pad>",
56
+ "pad_token_type_id": 0,
57
+ "padding_side": "right",
58
+ "sep_token": "</s>",
59
+ "stride": 0,
60
+ "tokenizer_class": "RobertaTokenizer",
61
+ "trim_offsets": true,
62
+ "truncation_side": "right",
63
+ "truncation_strategy": "longest_first",
64
+ "unk_token": "<unk>"
65
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff