--- license: mit datasets: - wikimedia/wikipedia - roneneldan/TinyStories - ajibawa-2023/Children-Stories-Collection - stas/c4-en-10k pipeline_tag: text-generation --- # Serayuki-1B **Model Developer**: Shoukaku07
**Model Type**: Causal Language Model ## Example Usage Using Hugging Face Transformers: ```python from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("SeraphyneLab/Serayuki-1B") tokenizer = AutoTokenizer.from_pretrained("SeraphyneLab/Serayuki-1B") input_text = "Once upon a time" inputs = tokenizer(input_text, return_tensors="pt").to("cuda") outputs = model.generate(**inputs, max_new_tokens=128) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` ## License This model is licensed under the [MIT License](https://opensource.org/licenses/MIT). ## Tokenizer Notice This model was trained from scratch; however, it uses the tokenizer from Meta’s LLaMA 3.2 3B Instruct model. As such, the tokenizer is subject to Meta’s [LLaMA 3 license](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct/blob/main/LICENSE.txt). Please review their terms before using this model or tokenizer in commercial applications.