Commit
·
a9a4831
0
Parent(s):
initial commit
Browse files- .gitattributes +36 -0
- README.md +236 -0
- config.json +41 -0
- configuration_apriel.py +448 -0
- generation_config.json +6 -0
- model-00001-of-00002.safetensors +3 -0
- model-00002-of-00002.safetensors +3 -0
- model.safetensors.index.json +262 -0
- modeling_apriel.py +1165 -0
- special_tokens_map.json +30 -0
- tokenizer.json +3 -0
- tokenizer_config.json +0 -0
.gitattributes
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,236 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model:
|
3 |
+
- ServiceNow-AI/Apriel-5B-Base
|
4 |
+
library_name: transformers
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
license: mit
|
8 |
+
---
|
9 |
+
|
10 |
+
# Apriel-5B
|
11 |
+
|
12 |
+
`/ˈɑː.pri.əl/`
|
13 |
+
|
14 |
+
## Table of Contents
|
15 |
+
|
16 |
+
1. [Model Summary](#model-summary)
|
17 |
+
2. [Evaluation](#evaluation)
|
18 |
+
3. [Intended Use](#intended-use)
|
19 |
+
4. [Limitations](#limitations)
|
20 |
+
5. [Security and Responsible Use](#security-and-responsible-use)
|
21 |
+
6. [License](#license)
|
22 |
+
7. [Citation](#citation)
|
23 |
+
|
24 |
+
## Model Summary
|
25 |
+
|
26 |
+
Apriel is a family of models built for versatility, offering high throughput and efficiency across a wide range of tasks.
|
27 |
+
|
28 |
+
### Apriel-5B-Base
|
29 |
+
Apriel-5B-base is a decoder-only transformer trained on 4.5T+ tokens of data. It is the first release in the Apriel model family, designed to support research on foundation models. Apriel-5B-base achieves strong performance across common benchmarks for models under 5B parameters.
|
30 |
+
|
31 |
+
### Apriel-5B-Instruct
|
32 |
+
[Apriel-5B-Instruct](https://huggingface.co/ServiceNow-AI/Apriel-5B-Instruct) is built on top of [Apriel-5B-base](https://huggingface.co/ServiceNow-AI/Apriel-5B-base) using continual pretraining (CPT), supervised finetuning (SFT), and post-training alignment with DPO and RLVR.
|
33 |
+
|
34 |
+
Both CPT and SFT stages involved training multiple domain-biased variants with overlapping datasets (e.g., instruction, code, math). These were then merged to form a more general-purpose model before alignment. The final model is aligned for instruction following, reasoning, and safety-aware dialogue.
|
35 |
+
|
36 |
+
<img src="https://huggingface.co/ServiceNow-AI/Apriel-4.8B-base/resolve/main/eval_vs_latency.png" alt="graph" width="400"/>
|
37 |
+
|
38 |
+
The y-axis shows average downstream benchmark scores. Throughput (x-axis) was measured using [vLLM](https://github.com/vllm-project/vllm) with batch size 8, 256 input tokens, and 32 output tokens.
|
39 |
+
|
40 |
+
### How to Use
|
41 |
+
|
42 |
+
```bash
|
43 |
+
pip install transformers
|
44 |
+
```
|
45 |
+
|
46 |
+
#### Running the Base model
|
47 |
+
```python
|
48 |
+
import torch
|
49 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
50 |
+
|
51 |
+
checkpoint = "ServiceNow-AI/Apriel-5B-Base"
|
52 |
+
device = "cuda" # or "cpu"
|
53 |
+
|
54 |
+
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
|
55 |
+
model = AutoModelForCausalLM.from_pretrained(checkpoint, torch_dtype=torch.bfloat16).to(device)
|
56 |
+
|
57 |
+
inputs = tokenizer.encode("Snow is", return_tensors="pt").to(device)
|
58 |
+
outputs = model.generate(inputs)
|
59 |
+
print(tokenizer.decode(outputs[0]))
|
60 |
+
```
|
61 |
+
|
62 |
+
```bash
|
63 |
+
>>> print(f"Memory footprint: {model.get_memory_footprint() / 1e6:.2f} MB")
|
64 |
+
Memory footprint: 9664.14 MB
|
65 |
+
```
|
66 |
+
|
67 |
+
#### Running the Instruct model
|
68 |
+
|
69 |
+
```python
|
70 |
+
import torch
|
71 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
72 |
+
|
73 |
+
checkpoint = "ServiceNow-AI/Apriel-5B-Instruct"
|
74 |
+
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
|
75 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
76 |
+
|
77 |
+
model = AutoModelForCausalLM.from_pretrained(
|
78 |
+
checkpoint,
|
79 |
+
torch_dtype=torch.bfloat16 if device == "cuda" else torch.float32
|
80 |
+
).to(device)
|
81 |
+
|
82 |
+
messages = [
|
83 |
+
{"role": "system", "content": "You are a helpful AI assistant that provides accurate and concise information."},
|
84 |
+
{"role": "user", "content": "Tell me about artificial intelligence"}
|
85 |
+
]
|
86 |
+
|
87 |
+
input_text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
88 |
+
inputs = tokenizer(input_text, return_tensors="pt").to(device)
|
89 |
+
|
90 |
+
generation_params = {
|
91 |
+
"max_new_tokens": 512,
|
92 |
+
"temperature": 0.2,
|
93 |
+
"top_p": 0.9,
|
94 |
+
"do_sample": True
|
95 |
+
}
|
96 |
+
|
97 |
+
outputs = model.generate(**inputs, **generation_params)
|
98 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
99 |
+
print(response)
|
100 |
+
```
|
101 |
+
|
102 |
+
### Chat Template
|
103 |
+
|
104 |
+
```
|
105 |
+
<|system|>
|
106 |
+
System message here (optional)
|
107 |
+
<|end|>
|
108 |
+
<|user|>
|
109 |
+
User message here
|
110 |
+
<|end|>
|
111 |
+
<|assistant|>
|
112 |
+
Assistant response here
|
113 |
+
<|end|>
|
114 |
+
```
|
115 |
+
|
116 |
+
If no system message is provided, the model inserts a blank system prompt to maintain format structure. The model supports structured interaction patterns, including tool calling and reasoning steps for more advanced workflows.
|
117 |
+
|
118 |
+
## Evaluation
|
119 |
+
|
120 |
+
Evaluations were conducted using [lm-eval-harness](https://github.com/EleutherAI/lm-evaluation-harness) and [evalchemy](https://github.com/mlfoundations/evalchemy).
|
121 |
+
|
122 |
+
### Apriel-5B-Base
|
123 |
+
|
124 |
+
| Task Name | Apriel-5B-Base | OLMo-2-1124-7B | Llama-3.1-8B | Mistral-Nemo-Base-2407 |
|
125 |
+
|---------------------|------------------|----------------|--------------|-------------------------|
|
126 |
+
| **Average** | 58.7 | 58.71 | 61.72 | 66.01 |
|
127 |
+
| **ARC Challenge** | 56.7 | 62.7 | 58.2 | 62.9 |
|
128 |
+
| **ARC Easy** | 82.4 | 86.0 | 85.7 | 86.7 |
|
129 |
+
| **MMMLU** | 44.5 | 35.3 | 47.4 | 54.7 |
|
130 |
+
| **Global MMLU** | 57.4 | 52.4 | 61.1 | 68.4 |
|
131 |
+
| **GSM8k** | 64.2 | 63.2 | 54.8 | 58.5 |
|
132 |
+
| **HellaSwag** | 74.4 | 80.5 | 78.8 | 82.7 |
|
133 |
+
| **MUSR** | 39.1 | 39.6 | 38.0 | 39.9 |
|
134 |
+
| **MBPP** | 27.6 | 22.4 | 46.0 | 54.6 |
|
135 |
+
| **MMLU** | 61.3 | 63.9 | 66.0 | 69.6 |
|
136 |
+
| **PIQA** | 78.9 | 81.1 | 81.2 | 82.1 |
|
137 |
+
|
138 |
+
|
139 |
+
|
140 |
+
### Apriel-5B-Instruct
|
141 |
+
|
142 |
+
| Task Name | Apriel-5B-Instruct | OLMo-2-1124-7B-Instruct | Llama-3.1-8B-Instruct | Mistral-Nemo-Instruct-2407 |
|
143 |
+
|--------------|--------------------|--------------------------|------------------------|----------------------------|
|
144 |
+
| **Average** | 49.64 | 43.91 | 52.60 | 48.63 |
|
145 |
+
| **ARC Challenge** | 59.04 | 61.45 | 64.25 | 66.38 |
|
146 |
+
| **GSM8k** | 80.36 | 79.68 | 82.63 | 77.63 |
|
147 |
+
| **Hellaswag** | 74.52 | 80.21 | 78.43 | 81.71 |
|
148 |
+
| **BBH** | 39.82 | 39.95 | 50.86 | 50.06 |
|
149 |
+
| **GPQA** | 28.36 | 27.85 | 29.19 | 29.45 |
|
150 |
+
| **IF Eval** | 80.78 | 72.64 | 79.67 | 62.85 |
|
151 |
+
| **MMLU Pro** | 29.19 | 26.57 | 37.74 | 35.09 |
|
152 |
+
| **MUSR** | 36.77 | 34.39 | 38.36 | 39.02 |
|
153 |
+
| **MBPP** | 45.80 | 28.00 | 59.00 | 57.60 |
|
154 |
+
| **TruthfulQA** | 56.09 | 56.46 | 55.05 | 57.69 |
|
155 |
+
| **Winogrande** | 62.35 | 65.35 | 67.01 | 70.01 |
|
156 |
+
| **Minerva Math** | 39.80 | 9.96 | 36.72 | 21.46 |
|
157 |
+
| **MATH500** | 53.00 | 31.4 | 45.80 | 34.40 |
|
158 |
+
| **AMC23** | 29.00 | 16.4 | 21.00 | 11.50 |
|
159 |
+
| **MixEval Hard** | 29.70 | 28.40 | 43.30 | 34.60 |
|
160 |
+
|
161 |
+
## Intended Use
|
162 |
+
|
163 |
+
The Apriel family of models are designed for a variety of general-purpose instruction tasks, including:
|
164 |
+
|
165 |
+
- Question answering and information retrieval
|
166 |
+
- Content generation and summarization
|
167 |
+
- Code assistance and generation
|
168 |
+
- Logical reasoning and multi-step tasks
|
169 |
+
- Creative writing and ideation
|
170 |
+
|
171 |
+
They are **not intended** for use in safety-critical applications without human oversight or in scenarios requiring guaranteed factual accuracy.
|
172 |
+
|
173 |
+
## Limitations
|
174 |
+
|
175 |
+
- **Factual accuracy:** May produce incorrect, misleading, or outdated content. Outputs should be verified before use in critical contexts.
|
176 |
+
- **Bias:** May reflect societal, cultural, or systemic biases present in training data.
|
177 |
+
- **Ethics:** Do not use the model to produce harmful, unlawful, or unethical content.
|
178 |
+
- **Language:** Strongest performance is in English. Output quality may degrade in underrepresented languages.
|
179 |
+
- **Critical use:** Not suitable for medical, legal, financial, or other high-risk applications without safeguards.
|
180 |
+
|
181 |
+
## Security and Responsible Use
|
182 |
+
|
183 |
+
**Security Responsibilities:**
|
184 |
+
Deployers and users are strongly encouraged to align their security practices with established frameworks and regulatory guidelines such as the EU AI Act and the NIST AI Risk Management Framework (RMF).
|
185 |
+
|
186 |
+
**Guidelines for Deployers:**
|
187 |
+
|
188 |
+
- Regularly conduct robustness assessments to identify and mitigate adversarial inputs.
|
189 |
+
- Implement validation and filtering processes to prevent harmful or biased outputs.
|
190 |
+
- Continuously perform data privacy checks to guard against unintended data leaks.
|
191 |
+
- Document and communicate the model's limitations, intended usage, and known security risks to all end-users.
|
192 |
+
- Schedule periodic security reviews and updates to address emerging threats and vulnerabilities.
|
193 |
+
|
194 |
+
**Guidelines for Users:**
|
195 |
+
|
196 |
+
- Follow established security policies and usage guidelines provided by deployers.
|
197 |
+
- Protect and manage sensitive information when interacting with the model.
|
198 |
+
- Report anomalies, suspicious behavior, or unsafe outputs to deployers or developers.
|
199 |
+
- Maintain human oversight and apply judgment to mitigate potential security or ethical risks during interactions.
|
200 |
+
|
201 |
+
**Disclaimer:**
|
202 |
+
Users accept responsibility for securely deploying, managing, and using this open-source LLM. The model is provided "as-is," without explicit or implied warranty regarding security or fitness for any specific application or environment.
|
203 |
+
|
204 |
+
## Pretraining
|
205 |
+
|
206 |
+
### Model
|
207 |
+
|
208 |
+
- **Architecture:** Transformer decoder with grouped-query attention and YARN rotary embeddings
|
209 |
+
- **Tokens:** 4.5T
|
210 |
+
- **Precision:** bfloat16
|
211 |
+
- **Knowledge cutoff:** April 2024
|
212 |
+
|
213 |
+
### Hardware
|
214 |
+
|
215 |
+
- **Compute:** 480 × H100 GPUs
|
216 |
+
- **GPU-hours:** ~91,000 H100-hours
|
217 |
+
|
218 |
+
### Software
|
219 |
+
|
220 |
+
- **Training stack:** [Fast-LLM](https://github.com/ServiceNow/Fast-LLM)
|
221 |
+
|
222 |
+
## License
|
223 |
+
|
224 |
+
MIT
|
225 |
+
|
226 |
+
## Citation
|
227 |
+
|
228 |
+
```bibtex
|
229 |
+
@misc{Apriel-small-language-models,
|
230 |
+
author = {Slam labs team},
|
231 |
+
title = {Apriel - a Family of performant small language models},
|
232 |
+
howpublished = {https://huggingface.co/ServiceNow-AI/Apriel-5B-Instruct},
|
233 |
+
publisher = {SLAM - ServiceNow Language Models Lab}
|
234 |
+
year = {2025}
|
235 |
+
}
|
236 |
+
```
|
config.json
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "ServiceNow-AI/Apriel-5B-Instruct",
|
3 |
+
"architectures": [
|
4 |
+
"AprielForCausalLM"
|
5 |
+
],
|
6 |
+
"auto_map": {
|
7 |
+
"AutoConfig": "configuration_apriel.AprielConfig",
|
8 |
+
"AutoModelForCausalLM": "modeling_apriel.AprielForCausalLM"
|
9 |
+
},
|
10 |
+
"attention_bias": false,
|
11 |
+
"attention_dropout": 0.0,
|
12 |
+
"bos_token_id": 1,
|
13 |
+
"eos_token_id": 2,
|
14 |
+
"head_dim": 128,
|
15 |
+
"hidden_act": "silu",
|
16 |
+
"hidden_size": 4096,
|
17 |
+
"initializer_range": 0.02,
|
18 |
+
"intermediate_size": 8192,
|
19 |
+
"max_position_embeddings": 16384,
|
20 |
+
"mlp_bias": false,
|
21 |
+
"model_type": "apriel",
|
22 |
+
"num_attention_heads": 24,
|
23 |
+
"num_hidden_layers": 28,
|
24 |
+
"num_key_value_heads": 8,
|
25 |
+
"pretraining_tp": 1,
|
26 |
+
"rms_norm_eps": 1e-05,
|
27 |
+
"rope_scaling": {
|
28 |
+
"attention_factor": null,
|
29 |
+
"beta_fast": 32.0,
|
30 |
+
"beta_slow": 1.0,
|
31 |
+
"factor": 32.0,
|
32 |
+
"original_max_position_embeddings": 4096,
|
33 |
+
"rope_type": "yarn"
|
34 |
+
},
|
35 |
+
"rope_theta": 1000000.0,
|
36 |
+
"tie_word_embeddings": false,
|
37 |
+
"torch_dtype": "bfloat16",
|
38 |
+
"transformers_version": "4.48.3",
|
39 |
+
"use_cache": true,
|
40 |
+
"vocab_size": 131072
|
41 |
+
}
|
configuration_apriel.py
ADDED
@@ -0,0 +1,448 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
5 |
+
# and OPT implementations in this library. It has been modified from its
|
6 |
+
# original forms to accommodate minor architectural differences compared
|
7 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
8 |
+
#
|
9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
+
# you may not use this file except in compliance with the License.
|
11 |
+
# You may obtain a copy of the License at
|
12 |
+
#
|
13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
14 |
+
#
|
15 |
+
# Unless required by applicable law or agreed to in writing, software
|
16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
+
# See the License for the specific language governing permissions and
|
19 |
+
# limitations under the License.
|
20 |
+
"""Apriel model configuration"""
|
21 |
+
|
22 |
+
import math
|
23 |
+
from typing import Optional, Tuple
|
24 |
+
|
25 |
+
from transformers.configuration_utils import PretrainedConfig
|
26 |
+
from transformers.utils import is_torch_available, logging
|
27 |
+
|
28 |
+
logger = logging.get_logger(__name__)
|
29 |
+
|
30 |
+
if is_torch_available():
|
31 |
+
import torch
|
32 |
+
|
33 |
+
def _compute_default_rope_parameters(
|
34 |
+
config: Optional[PretrainedConfig] = None,
|
35 |
+
device: Optional["torch.device"] = None,
|
36 |
+
seq_len: Optional[int] = None,
|
37 |
+
**rope_kwargs,
|
38 |
+
) -> Tuple["torch.Tensor", float]:
|
39 |
+
"""
|
40 |
+
Computes the inverse frequencies according to the original RoPE implementation
|
41 |
+
Args:
|
42 |
+
config ([`~transformers.PretrainedConfig`]):
|
43 |
+
The model configuration.
|
44 |
+
device (`torch.device`):
|
45 |
+
The device to use for initialization of the inverse frequencies.
|
46 |
+
seq_len (`int`, *optional*):
|
47 |
+
The current sequence length. Unused for this type of RoPE.
|
48 |
+
rope_kwargs (`Dict`, *optional*):
|
49 |
+
BC compatibility with the previous RoPE class instantiation, will be removed in v4.45.
|
50 |
+
Returns:
|
51 |
+
Tuple of (`torch.Tensor`, `float`), containing the inverse frequencies for the RoPE embeddings and the
|
52 |
+
post-processing scaling factor applied to the computed cos/sin (unused in this type of RoPE).
|
53 |
+
"""
|
54 |
+
if config is not None and len(rope_kwargs) > 0:
|
55 |
+
raise ValueError(
|
56 |
+
"Unexpected arguments: `**rope_kwargs` and `config` are mutually exclusive in "
|
57 |
+
f"`_compute_default_rope_parameters`, got `rope_kwargs`={rope_kwargs} and `config`={config}"
|
58 |
+
)
|
59 |
+
if len(rope_kwargs) > 0:
|
60 |
+
base = rope_kwargs["base"]
|
61 |
+
dim = rope_kwargs["dim"]
|
62 |
+
elif config is not None:
|
63 |
+
base = config.rope_theta
|
64 |
+
partial_rotary_factor = config.partial_rotary_factor if hasattr(config, "partial_rotary_factor") else 1.0
|
65 |
+
head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
|
66 |
+
dim = int(head_dim * partial_rotary_factor)
|
67 |
+
|
68 |
+
attention_factor = 1.0 # Unused in this type of RoPE
|
69 |
+
|
70 |
+
# Compute the inverse frequencies
|
71 |
+
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.int64).float().to(device) / dim))
|
72 |
+
return inv_freq, attention_factor
|
73 |
+
|
74 |
+
def _compute_yarn_parameters(
|
75 |
+
config: PretrainedConfig, device: "torch.device", seq_len: Optional[int] = None, **rope_kwargs
|
76 |
+
) -> Tuple["torch.Tensor", float]:
|
77 |
+
"""
|
78 |
+
Computes the inverse frequencies with NTK scaling. Please refer to the
|
79 |
+
[original paper](https://arxiv.org/abs/2309.00071)
|
80 |
+
Args:
|
81 |
+
config ([`~transformers.PretrainedConfig`]):
|
82 |
+
The model configuration.
|
83 |
+
device (`torch.device`):
|
84 |
+
The device to use for initialization of the inverse frequencies.
|
85 |
+
seq_len (`int`, *optional*):
|
86 |
+
The current sequence length. Unused for this type of RoPE.
|
87 |
+
rope_kwargs (`Dict`, *optional*):
|
88 |
+
BC compatibility with the previous RoPE class instantiation, will be removed in v4.45.
|
89 |
+
Returns:
|
90 |
+
Tuple of (`torch.Tensor`, `float`), containing the inverse frequencies for the RoPE embeddings and the
|
91 |
+
post-processing scaling factor applied to the computed cos/sin.
|
92 |
+
"""
|
93 |
+
# No need to keep BC with yarn, unreleased when this new pattern was created.
|
94 |
+
if len(rope_kwargs) > 0:
|
95 |
+
raise ValueError(
|
96 |
+
f"Unexpected arguments: `**rope_kwargs` should be unset in `_compute_yarn_parameters`, got {rope_kwargs}"
|
97 |
+
)
|
98 |
+
|
99 |
+
base = config.rope_theta
|
100 |
+
partial_rotary_factor = config.partial_rotary_factor if hasattr(config, "partial_rotary_factor") else 1.0
|
101 |
+
head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
|
102 |
+
dim = int(head_dim * partial_rotary_factor)
|
103 |
+
|
104 |
+
# Apriel: Use original max_position_embeddings instead of max_position_embeddings
|
105 |
+
max_position_embeddings = config.rope_scaling.get("original_max_position_embeddings", config.max_position_embeddings)
|
106 |
+
factor = config.rope_scaling["factor"]
|
107 |
+
|
108 |
+
# Sets the attention factor as suggested in the paper
|
109 |
+
attention_factor = config.rope_scaling.get("attention_factor")
|
110 |
+
if attention_factor is None:
|
111 |
+
attention_factor = 0.1 * math.log(factor) + 1.0
|
112 |
+
|
113 |
+
# Optional config options
|
114 |
+
# beta_fast/beta_slow: as suggested in the paper, default to 32/1 (correspondingly)
|
115 |
+
beta_fast = config.rope_scaling.get("beta_fast") or 32
|
116 |
+
beta_slow = config.rope_scaling.get("beta_slow") or 1
|
117 |
+
|
118 |
+
# Compute the inverse frequencies
|
119 |
+
def find_correction_dim(num_rotations, dim, base, max_position_embeddings):
|
120 |
+
"""Inverse dimension formula to find the dimension based on the number of rotations"""
|
121 |
+
return (dim * math.log(max_position_embeddings / (num_rotations * 2 * math.pi))) / (2 * math.log(base))
|
122 |
+
|
123 |
+
def find_correction_range(low_rot, high_rot, dim, base, max_position_embeddings):
|
124 |
+
"""Find dimension range bounds based on rotations"""
|
125 |
+
low = math.floor(find_correction_dim(low_rot, dim, base, max_position_embeddings))
|
126 |
+
high = math.ceil(find_correction_dim(high_rot, dim, base, max_position_embeddings))
|
127 |
+
return max(low, 0), min(high, dim - 1)
|
128 |
+
|
129 |
+
def linear_ramp_factor(min, max, dim):
|
130 |
+
if min == max:
|
131 |
+
max += 0.001 # Prevent singularity
|
132 |
+
|
133 |
+
linear_func = (torch.arange(dim, dtype=torch.float32) - min) / (max - min)
|
134 |
+
ramp_func = torch.clamp(linear_func, 0, 1)
|
135 |
+
return ramp_func
|
136 |
+
|
137 |
+
# Note on variable naming: "interpolation" comes from the original technique, where we interpolate the position IDs
|
138 |
+
# to expand the possible context length. In other words, interpolation = apply scaling factor.
|
139 |
+
pos_freqs = base ** (torch.arange(0, dim, 2).float().to(device) / dim)
|
140 |
+
inv_freq_extrapolation = 1.0 / pos_freqs
|
141 |
+
inv_freq_interpolation = 1.0 / (factor * pos_freqs)
|
142 |
+
|
143 |
+
low, high = find_correction_range(beta_fast, beta_slow, dim, base, max_position_embeddings)
|
144 |
+
|
145 |
+
# Get n-dimensional rotational scaling corrected for extrapolation
|
146 |
+
inv_freq_extrapolation_factor = 1 - linear_ramp_factor(low, high, dim // 2).float().to(device)
|
147 |
+
inv_freq = (
|
148 |
+
inv_freq_interpolation * (1 - inv_freq_extrapolation_factor)
|
149 |
+
+ inv_freq_extrapolation * inv_freq_extrapolation_factor
|
150 |
+
)
|
151 |
+
|
152 |
+
return inv_freq, attention_factor
|
153 |
+
|
154 |
+
def _check_received_keys(
|
155 |
+
rope_type: str,
|
156 |
+
received_keys: set,
|
157 |
+
required_keys: set,
|
158 |
+
optional_keys: Optional[set] = None,
|
159 |
+
ignore_keys: Optional[set] = None,
|
160 |
+
):
|
161 |
+
|
162 |
+
"""Compare the received keys in `config.rope_scaling` against the expected and optional keys"""
|
163 |
+
# BC: "rope_type" was originally "type" -- let's check for "rope_type" when "type" is present
|
164 |
+
if "type" in received_keys:
|
165 |
+
received_keys -= {"type"}
|
166 |
+
required_keys.add("rope_type")
|
167 |
+
|
168 |
+
# Some models need to store model-specific keys, and we don't want to throw warning at them
|
169 |
+
if ignore_keys is not None:
|
170 |
+
received_keys -= ignore_keys
|
171 |
+
|
172 |
+
missing_keys = required_keys - received_keys
|
173 |
+
if missing_keys:
|
174 |
+
raise KeyError(f"Missing required keys in `rope_scaling` for 'rope_type'='{rope_type}': {missing_keys}")
|
175 |
+
|
176 |
+
if optional_keys is not None:
|
177 |
+
unused_keys = received_keys - required_keys - optional_keys
|
178 |
+
else:
|
179 |
+
unused_keys = received_keys - required_keys
|
180 |
+
if unused_keys:
|
181 |
+
logger.warning(f"Unrecognized keys in `rope_scaling` for 'rope_type'='{rope_type}': {unused_keys}")
|
182 |
+
|
183 |
+
|
184 |
+
def _validate_default_rope_parameters(config: PretrainedConfig, ignore_keys: Optional[set] = None):
|
185 |
+
rope_scaling = config.rope_scaling
|
186 |
+
rope_type = rope_scaling.get("rope_type", rope_scaling.get("type", None)) # BC: "rope_type" was originally "type"
|
187 |
+
required_keys = {"rope_type"}
|
188 |
+
received_keys = set(rope_scaling.keys())
|
189 |
+
_check_received_keys(rope_type, received_keys, required_keys, ignore_keys=ignore_keys)
|
190 |
+
|
191 |
+
def _validate_yarn_parameters(config: PretrainedConfig, ignore_keys: Optional[set] = None):
|
192 |
+
rope_scaling = config.rope_scaling
|
193 |
+
rope_type = rope_scaling.get("rope_type", rope_scaling.get("type", None)) # BC: "rope_type" was originally "type"
|
194 |
+
required_keys = {"rope_type", "factor", "original_max_position_embeddings"}
|
195 |
+
optional_keys = {"attention_factor", "beta_fast", "beta_slow"}
|
196 |
+
received_keys = set(rope_scaling.keys())
|
197 |
+
_check_received_keys(rope_type, received_keys, required_keys, optional_keys, ignore_keys=ignore_keys)
|
198 |
+
|
199 |
+
factor = rope_scaling["factor"]
|
200 |
+
if factor is None or not isinstance(factor, float) or factor < 1.0:
|
201 |
+
logger.warning(f"`rope_scaling`'s factor field must be a float >= 1, got {factor}")
|
202 |
+
|
203 |
+
attention_factor = rope_scaling.get("attention_factor")
|
204 |
+
if attention_factor is not None and (not isinstance(attention_factor, float) or attention_factor < 0):
|
205 |
+
logger.warning(
|
206 |
+
f"`rope_scaling`'s attention_factor field must be a float greater than 0, got {attention_factor}"
|
207 |
+
)
|
208 |
+
beta_fast = rope_scaling.get("beta_fast")
|
209 |
+
if beta_fast is not None and not isinstance(beta_fast, float):
|
210 |
+
logger.warning(f"`rope_scaling`'s beta_fast field must be a float, got {beta_fast}")
|
211 |
+
beta_slow = rope_scaling.get("beta_slow")
|
212 |
+
if beta_slow is not None and not isinstance(beta_slow, float):
|
213 |
+
logger.warning(f"`rope_scaling`'s beta_slow field must be a float, got {beta_slow}")
|
214 |
+
|
215 |
+
if (beta_fast or 32) < (beta_slow or 1):
|
216 |
+
logger.warning(
|
217 |
+
f"`rope_scaling`'s beta_fast field must be greater than beta_slow, got beta_fast={beta_fast} "
|
218 |
+
f"(defaults to 32 if None) and beta_slow={beta_slow} (defaults to 1 if None)"
|
219 |
+
)
|
220 |
+
# This maps the "rope_type" string field in rope config to the corresponding function to compute the RoPE parameters
|
221 |
+
# from the model config. You can append new {'rope_type': callable} pairs to this dictionary to enable custom RoPE
|
222 |
+
# parameterizations, as long as the callable has the same signature.
|
223 |
+
ROPE_INIT_FUNCTIONS = {
|
224 |
+
"default": _compute_default_rope_parameters,
|
225 |
+
"yarn": _compute_yarn_parameters,
|
226 |
+
}
|
227 |
+
|
228 |
+
# Like `ROPE_INIT_FUNCTIONS`, this validation function mapping can be dynamically updated for custom RoPE types.
|
229 |
+
ROPE_VALIDATION_FUNCTIONS = {
|
230 |
+
"default": _validate_default_rope_parameters,
|
231 |
+
"yarn": _validate_yarn_parameters,
|
232 |
+
}
|
233 |
+
|
234 |
+
def rope_config_validation(config: PretrainedConfig, ignore_keys: Optional[set] = None):
|
235 |
+
"""
|
236 |
+
Validate the RoPE config arguments, given a `PretrainedConfig` object
|
237 |
+
"""
|
238 |
+
rope_scaling = getattr(config, "rope_scaling", None) # not a default parameter in `PretrainedConfig`
|
239 |
+
if rope_scaling is None:
|
240 |
+
return
|
241 |
+
|
242 |
+
# BC: "rope_type" was originally "type"
|
243 |
+
rope_type = rope_scaling.get("rope_type", rope_scaling.get("type", "default"))
|
244 |
+
validation_fn = ROPE_VALIDATION_FUNCTIONS.get(rope_type)
|
245 |
+
if validation_fn is not None:
|
246 |
+
validation_fn(config, ignore_keys=ignore_keys)
|
247 |
+
else:
|
248 |
+
logger.warning(
|
249 |
+
f"Missing validation function mapping in `ROPE_VALIDATION_FUNCTIONS` for 'rope_type'='{rope_type}'"
|
250 |
+
)
|
251 |
+
|
252 |
+
class AprielConfig(PretrainedConfig):
|
253 |
+
r"""
|
254 |
+
This is the configuration class to store the configuration of a [`AprielModel`]. It is used to instantiate an Apriel
|
255 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
256 |
+
defaults will yield a similar configuration to that of the Apriel-5B-Base.
|
257 |
+
|
258 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
259 |
+
documentation from [`PretrainedConfig`] for more information.
|
260 |
+
|
261 |
+
|
262 |
+
Args:
|
263 |
+
vocab_size (`int`, *optional*, defaults to 32000):
|
264 |
+
Vocabulary size of the Apriel model. Defines the number of different tokens that can be represented by the
|
265 |
+
`inputs_ids` passed when calling [`AprielModel`]
|
266 |
+
hidden_size (`int`, *optional*, defaults to 4096):
|
267 |
+
Dimension of the hidden representations.
|
268 |
+
intermediate_size (`int`, *optional*, defaults to 11008):
|
269 |
+
Dimension of the MLP representations.
|
270 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
271 |
+
Number of hidden layers in the Transformer decoder.
|
272 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
273 |
+
Number of attention heads for each attention layer in the Transformer decoder.
|
274 |
+
num_key_value_heads (`int`, *optional*):
|
275 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
276 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
277 |
+
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
278 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
279 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
280 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
281 |
+
`num_attention_heads`.
|
282 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
283 |
+
The non-linear activation function (function or string) in the decoder.
|
284 |
+
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
285 |
+
The maximum sequence length that this model might ever be used with. Apriel-5B-Base supports up to 16384 tokens.
|
286 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
287 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
288 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
|
289 |
+
The epsilon used by the rms normalization layers.
|
290 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
291 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
292 |
+
relevant if `config.is_decoder=True`.
|
293 |
+
pad_token_id (`int`, *optional*):
|
294 |
+
Padding token id.
|
295 |
+
bos_token_id (`int`, *optional*, defaults to 1):
|
296 |
+
Beginning of stream token id.
|
297 |
+
eos_token_id (`int`, *optional*, defaults to 2):
|
298 |
+
End of stream token id.
|
299 |
+
pretraining_tp (`int`, *optional*, defaults to 1):
|
300 |
+
Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
|
301 |
+
document](https://huggingface.co/docs/transformers/main/perf_train_gpu_many#tensor-parallelism) to
|
302 |
+
understand more about it. This value is necessary to ensure exact reproducibility of the pretraining
|
303 |
+
results. Please refer to [this issue](https://github.com/pytorch/pytorch/issues/76232).
|
304 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
305 |
+
Whether to tie weight embeddings
|
306 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
307 |
+
The base period of the RoPE embeddings.
|
308 |
+
rope_scaling (`Dict`, *optional*):
|
309 |
+
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
|
310 |
+
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
|
311 |
+
accordingly.
|
312 |
+
Expected contents:
|
313 |
+
`rope_type` (`str`):
|
314 |
+
The sub-variant of RoPE to use. Can be one of ['default', 'yarn'], with 'default' being the original RoPE implementation.
|
315 |
+
`factor` (`float`, *optional*):
|
316 |
+
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
|
317 |
+
most scaling types, a `factor` of x will enable the model to handle sequences of length x *
|
318 |
+
original maximum pre-trained length.
|
319 |
+
`original_max_position_embeddings` (`int`, *optional*):
|
320 |
+
Used with 'yarn', 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
|
321 |
+
pretraining.
|
322 |
+
`attention_factor` (`float`, *optional*):
|
323 |
+
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
|
324 |
+
computation. If unspecified, it defaults to value recommended by the implementation, using the
|
325 |
+
`factor` field to infer the suggested value.
|
326 |
+
`beta_fast` (`float`, *optional*):
|
327 |
+
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
|
328 |
+
ramp function. If unspecified, it defaults to 32.
|
329 |
+
`beta_slow` (`float`, *optional*):
|
330 |
+
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
|
331 |
+
ramp function. If unspecified, it defaults to 1.
|
332 |
+
`short_factor` (`List[float]`, *optional*):
|
333 |
+
Only used with 'longrope'. The scaling factor to be applied to short contexts (<
|
334 |
+
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
|
335 |
+
size divided by the number of attention heads divided by 2
|
336 |
+
`long_factor` (`List[float]`, *optional*):
|
337 |
+
Only used with 'longrope'. The scaling factor to be applied to long contexts (<
|
338 |
+
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
|
339 |
+
size divided by the number of attention heads divided by 2
|
340 |
+
`low_freq_factor` (`float`, *optional*):
|
341 |
+
Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
|
342 |
+
`high_freq_factor` (`float`, *optional*):
|
343 |
+
Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
|
344 |
+
attention_bias (`bool`, *optional*, defaults to `False`):
|
345 |
+
Whether to use a bias in the query, key, value and output projection layers during self-attention.
|
346 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
347 |
+
The dropout ratio for the attention probabilities.
|
348 |
+
mlp_bias (`bool`, *optional*, defaults to `False`):
|
349 |
+
Whether to use a bias in up_proj, down_proj and gate_proj layers in the MLP layers.
|
350 |
+
head_dim (`int`, *optional*):
|
351 |
+
The attention head dimension. If None, it will default to hidden_size // num_attention_heads
|
352 |
+
|
353 |
+
```python
|
354 |
+
>>> from transformers import AprielModel, AprielConfig
|
355 |
+
|
356 |
+
>>> # Initializing an Apriel Apriel-5B-Base style configuration
|
357 |
+
>>> configuration = AprielConfig()
|
358 |
+
|
359 |
+
>>> # Initializing a model from the Apriel-5B-Base style configuration
|
360 |
+
>>> model = AprielModel(configuration)
|
361 |
+
|
362 |
+
>>> # Accessing the model configuration
|
363 |
+
>>> configuration = model.config
|
364 |
+
```"""
|
365 |
+
|
366 |
+
model_type = "apriel"
|
367 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
368 |
+
# Default tensor parallel plan for base model `AprielModel`
|
369 |
+
base_model_tp_plan = {
|
370 |
+
"layers.*.self_attn.q_proj": "colwise",
|
371 |
+
"layers.*.self_attn.k_proj": "colwise",
|
372 |
+
"layers.*.self_attn.v_proj": "colwise",
|
373 |
+
"layers.*.self_attn.o_proj": "rowwise",
|
374 |
+
"layers.*.mlp.gate_proj": "colwise",
|
375 |
+
"layers.*.mlp.up_proj": "colwise",
|
376 |
+
"layers.*.mlp.down_proj": "rowwise",
|
377 |
+
}
|
378 |
+
base_model_pp_plan = {
|
379 |
+
"embed_tokens": (["input_ids"], ["inputs_embeds"]),
|
380 |
+
"layers": (["hidden_states", "attention_mask"], ["hidden_states"]),
|
381 |
+
"norm": (["hidden_states"], ["hidden_states"]),
|
382 |
+
}
|
383 |
+
|
384 |
+
def __init__(
|
385 |
+
self,
|
386 |
+
vocab_size=32000,
|
387 |
+
hidden_size=4096,
|
388 |
+
intermediate_size=11008,
|
389 |
+
num_hidden_layers=32,
|
390 |
+
num_attention_heads=32,
|
391 |
+
num_key_value_heads=None,
|
392 |
+
hidden_act="silu",
|
393 |
+
max_position_embeddings=2048,
|
394 |
+
initializer_range=0.02,
|
395 |
+
rms_norm_eps=1e-6,
|
396 |
+
use_cache=True,
|
397 |
+
pad_token_id=None,
|
398 |
+
bos_token_id=1,
|
399 |
+
eos_token_id=2,
|
400 |
+
pretraining_tp=1,
|
401 |
+
tie_word_embeddings=False,
|
402 |
+
rope_theta=10000.0,
|
403 |
+
rope_scaling=None,
|
404 |
+
attention_bias=False,
|
405 |
+
attention_dropout=0.0,
|
406 |
+
mlp_bias=False,
|
407 |
+
head_dim=None,
|
408 |
+
**kwargs,
|
409 |
+
):
|
410 |
+
self.vocab_size = vocab_size
|
411 |
+
self.max_position_embeddings = max_position_embeddings
|
412 |
+
self.hidden_size = hidden_size
|
413 |
+
self.intermediate_size = intermediate_size
|
414 |
+
self.num_hidden_layers = num_hidden_layers
|
415 |
+
self.num_attention_heads = num_attention_heads
|
416 |
+
|
417 |
+
# for backward compatibility
|
418 |
+
if num_key_value_heads is None:
|
419 |
+
num_key_value_heads = num_attention_heads
|
420 |
+
|
421 |
+
self.num_key_value_heads = num_key_value_heads
|
422 |
+
self.hidden_act = hidden_act
|
423 |
+
self.initializer_range = initializer_range
|
424 |
+
self.rms_norm_eps = rms_norm_eps
|
425 |
+
self.pretraining_tp = pretraining_tp
|
426 |
+
self.use_cache = use_cache
|
427 |
+
self.rope_theta = rope_theta
|
428 |
+
self.rope_scaling = rope_scaling
|
429 |
+
self.attention_bias = attention_bias
|
430 |
+
self.attention_dropout = attention_dropout
|
431 |
+
self.mlp_bias = mlp_bias
|
432 |
+
self.head_dim = head_dim if head_dim is not None else self.hidden_size // self.num_attention_heads
|
433 |
+
# Validate the correctness of rotary position embeddings parameters
|
434 |
+
# BC: if there is a 'type' field, copy it it to 'rope_type'.
|
435 |
+
if self.rope_scaling is not None and "type" in self.rope_scaling:
|
436 |
+
self.rope_scaling["rope_type"] = self.rope_scaling["type"]
|
437 |
+
rope_config_validation(self)
|
438 |
+
|
439 |
+
super().__init__(
|
440 |
+
pad_token_id=pad_token_id,
|
441 |
+
bos_token_id=bos_token_id,
|
442 |
+
eos_token_id=eos_token_id,
|
443 |
+
tie_word_embeddings=tie_word_embeddings,
|
444 |
+
**kwargs,
|
445 |
+
)
|
446 |
+
|
447 |
+
|
448 |
+
__all__ = ["AprielConfig"]
|
generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"transformers_version": "4.47.1"
|
6 |
+
}
|
model-00001-of-00002.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:50d15d4b66a506f71676f740bfa928b11678b0cee42dd5673f538db413419970
|
3 |
+
size 4966300624
|
model-00002-of-00002.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4de73dd452d8707c9a32b45b473389e341e0b765b60b1e0f32598e5912b95a29
|
3 |
+
size 4697872352
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,262 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 9664143360
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "model-00002-of-00002.safetensors",
|
7 |
+
"model.embed_tokens.weight": "model-00001-of-00002.safetensors",
|
8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
13 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
14 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
15 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
16 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
17 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
18 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
19 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
20 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
21 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
22 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
23 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
24 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
25 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
26 |
+
"model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
27 |
+
"model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
28 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
29 |
+
"model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
30 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
31 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
32 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
33 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
34 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
35 |
+
"model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
36 |
+
"model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
37 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
38 |
+
"model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
39 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
40 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
41 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
42 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
43 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
44 |
+
"model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
45 |
+
"model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
46 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
47 |
+
"model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
48 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
49 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
50 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
51 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
52 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
53 |
+
"model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
54 |
+
"model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
55 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
56 |
+
"model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
57 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
58 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
59 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
60 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
61 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
62 |
+
"model.layers.14.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
63 |
+
"model.layers.14.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
64 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
65 |
+
"model.layers.14.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
66 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
67 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
68 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
69 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
70 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
71 |
+
"model.layers.15.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
72 |
+
"model.layers.15.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
73 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
74 |
+
"model.layers.15.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
75 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
76 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
77 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
78 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
79 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
80 |
+
"model.layers.16.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
81 |
+
"model.layers.16.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
82 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
83 |
+
"model.layers.16.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
84 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
85 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
86 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
87 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
88 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
89 |
+
"model.layers.17.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
90 |
+
"model.layers.17.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
91 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
92 |
+
"model.layers.17.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
93 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
94 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
95 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
96 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
97 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
98 |
+
"model.layers.18.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
99 |
+
"model.layers.18.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
100 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
101 |
+
"model.layers.18.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
102 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
103 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
104 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
105 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
106 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
107 |
+
"model.layers.19.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
108 |
+
"model.layers.19.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
109 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
110 |
+
"model.layers.19.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
111 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
112 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
113 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
114 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
115 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
116 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
117 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
118 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
119 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
120 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
121 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
122 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
123 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
124 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
125 |
+
"model.layers.20.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
126 |
+
"model.layers.20.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
127 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
128 |
+
"model.layers.20.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
129 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
130 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
131 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
132 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
133 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
134 |
+
"model.layers.21.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
135 |
+
"model.layers.21.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
136 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
137 |
+
"model.layers.21.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
138 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
139 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
140 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
141 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
142 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
143 |
+
"model.layers.22.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
144 |
+
"model.layers.22.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
145 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
146 |
+
"model.layers.22.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
147 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
148 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
149 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
150 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
151 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
152 |
+
"model.layers.23.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
153 |
+
"model.layers.23.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
154 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
155 |
+
"model.layers.23.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
156 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
157 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
158 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
159 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
160 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
161 |
+
"model.layers.24.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
162 |
+
"model.layers.24.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
163 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
164 |
+
"model.layers.24.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
165 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
166 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
167 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
168 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
169 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
170 |
+
"model.layers.25.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
171 |
+
"model.layers.25.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
172 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
173 |
+
"model.layers.25.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
174 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
175 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
176 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
177 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
178 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
179 |
+
"model.layers.26.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
180 |
+
"model.layers.26.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
181 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
182 |
+
"model.layers.26.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
183 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
184 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
185 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
186 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
187 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
188 |
+
"model.layers.27.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
189 |
+
"model.layers.27.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
190 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
191 |
+
"model.layers.27.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
192 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
193 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
194 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
195 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
196 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
197 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
198 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
199 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
200 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
201 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
202 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
203 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
204 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
205 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
206 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
207 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
208 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
209 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
210 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
211 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
212 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
213 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
214 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
215 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
216 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
217 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
218 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
219 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
220 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
221 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
222 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
223 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
224 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
225 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
226 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
227 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
228 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
229 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
230 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
231 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
232 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
233 |
+
"model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
234 |
+
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
235 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
236 |
+
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
237 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
238 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
239 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
240 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
241 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
242 |
+
"model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
243 |
+
"model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
244 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
245 |
+
"model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
246 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
247 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
248 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
249 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
250 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
251 |
+
"model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
252 |
+
"model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
253 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
254 |
+
"model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
255 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
256 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
257 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
258 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
259 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
260 |
+
"model.norm.weight": "model-00002-of-00002.safetensors"
|
261 |
+
}
|
262 |
+
}
|
modeling_apriel.py
ADDED
@@ -0,0 +1,1165 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
5 |
+
# and OPT implementations in this library. It has been modified from its
|
6 |
+
# original forms to accommodate minor architectural differences compared
|
7 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
8 |
+
#
|
9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
+
# you may not use this file except in compliance with the License.
|
11 |
+
# You may obtain a copy of the License at
|
12 |
+
#
|
13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
14 |
+
#
|
15 |
+
# Unless required by applicable law or agreed to in writing, software
|
16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
+
# See the License for the specific language governing permissions and
|
19 |
+
# limitations under the License.
|
20 |
+
from typing import Callable, List, Optional, Tuple, Union
|
21 |
+
|
22 |
+
import torch
|
23 |
+
import torch.utils.checkpoint
|
24 |
+
from torch import nn
|
25 |
+
|
26 |
+
from transformers.activations import ACT2FN
|
27 |
+
from transformers.cache_utils import Cache, DynamicCache, StaticCache
|
28 |
+
from transformers.generation import GenerationMixin
|
29 |
+
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
|
30 |
+
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
|
31 |
+
from transformers.modeling_outputs import (
|
32 |
+
BaseModelOutputWithPast,
|
33 |
+
CausalLMOutputWithPast,
|
34 |
+
QuestionAnsweringModelOutput,
|
35 |
+
SequenceClassifierOutputWithPast,
|
36 |
+
TokenClassifierOutput,
|
37 |
+
)
|
38 |
+
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
|
39 |
+
from transformers.processing_utils import Unpack
|
40 |
+
from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
|
41 |
+
from transformers.utils import (
|
42 |
+
LossKwargs,
|
43 |
+
add_code_sample_docstrings,
|
44 |
+
add_start_docstrings,
|
45 |
+
add_start_docstrings_to_model_forward,
|
46 |
+
logging,
|
47 |
+
replace_return_docstrings,
|
48 |
+
)
|
49 |
+
from transformers.utils.deprecation import deprecate_kwarg
|
50 |
+
from .configuration_apriel import AprielConfig
|
51 |
+
from .configuration_apriel import ROPE_INIT_FUNCTIONS
|
52 |
+
|
53 |
+
|
54 |
+
logger = logging.get_logger(__name__)
|
55 |
+
|
56 |
+
_CHECKPOINT_FOR_DOC = "ServiceNow-AI/Apriel-5B-Instruct"
|
57 |
+
_CONFIG_FOR_DOC = "AprielConfig"
|
58 |
+
|
59 |
+
|
60 |
+
class AprielRMSNorm(nn.Module):
|
61 |
+
def __init__(self, hidden_size, eps=1e-6):
|
62 |
+
"""
|
63 |
+
AprielRMSNorm is equivalent to T5LayerNorm
|
64 |
+
"""
|
65 |
+
super().__init__()
|
66 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
67 |
+
self.variance_epsilon = eps
|
68 |
+
|
69 |
+
def forward(self, hidden_states):
|
70 |
+
input_dtype = hidden_states.dtype
|
71 |
+
hidden_states = hidden_states.to(torch.float32)
|
72 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
73 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
74 |
+
return self.weight * hidden_states.to(input_dtype)
|
75 |
+
|
76 |
+
def extra_repr(self):
|
77 |
+
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
|
78 |
+
|
79 |
+
|
80 |
+
ALL_LAYERNORM_LAYERS.append(AprielRMSNorm)
|
81 |
+
|
82 |
+
|
83 |
+
class AprielRotaryEmbedding(nn.Module):
|
84 |
+
def __init__(self, config: AprielConfig, device=None):
|
85 |
+
super().__init__()
|
86 |
+
# BC: "rope_type" was originally "type"
|
87 |
+
if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
|
88 |
+
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
|
89 |
+
else:
|
90 |
+
self.rope_type = "default"
|
91 |
+
self.max_seq_len_cached = config.max_position_embeddings
|
92 |
+
self.original_max_seq_len = config.max_position_embeddings
|
93 |
+
|
94 |
+
self.config = config
|
95 |
+
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
|
96 |
+
|
97 |
+
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
|
98 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
99 |
+
self.original_inv_freq = self.inv_freq
|
100 |
+
|
101 |
+
def _dynamic_frequency_update(self, position_ids, device):
|
102 |
+
"""
|
103 |
+
dynamic RoPE layers should recompute `inv_freq` in the following situations:
|
104 |
+
1 - growing beyond the cached sequence length (allow scaling)
|
105 |
+
2 - the current sequence length is in the original scale (avoid losing precision with small sequences)
|
106 |
+
"""
|
107 |
+
seq_len = torch.max(position_ids) + 1
|
108 |
+
if seq_len > self.max_seq_len_cached: # growth
|
109 |
+
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, seq_len=seq_len)
|
110 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: may break with compilation
|
111 |
+
self.max_seq_len_cached = seq_len
|
112 |
+
|
113 |
+
if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: # reset
|
114 |
+
# This .to() is needed if the model has been moved to a device after being initialized (because
|
115 |
+
# the buffer is automatically moved, but not the original copy)
|
116 |
+
self.original_inv_freq = self.original_inv_freq.to(device)
|
117 |
+
self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
|
118 |
+
self.max_seq_len_cached = self.original_max_seq_len
|
119 |
+
|
120 |
+
@torch.no_grad()
|
121 |
+
def forward(self, x, position_ids):
|
122 |
+
if "dynamic" in self.rope_type:
|
123 |
+
self._dynamic_frequency_update(position_ids, device=x.device)
|
124 |
+
|
125 |
+
# Core RoPE block
|
126 |
+
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
|
127 |
+
position_ids_expanded = position_ids[:, None, :].float()
|
128 |
+
# Force float32 (see https://github.com/huggingface/transformers/pull/29285)
|
129 |
+
device_type = x.device.type
|
130 |
+
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
|
131 |
+
with torch.autocast(device_type=device_type, enabled=False):
|
132 |
+
freqs = (inv_freq_expanded.float().to(x.device) @ position_ids_expanded.float()).transpose(1, 2)
|
133 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
134 |
+
cos = emb.cos()
|
135 |
+
sin = emb.sin()
|
136 |
+
|
137 |
+
# Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention
|
138 |
+
cos = cos * self.attention_scaling
|
139 |
+
sin = sin * self.attention_scaling
|
140 |
+
|
141 |
+
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
142 |
+
|
143 |
+
|
144 |
+
def rotate_half(x):
|
145 |
+
"""Rotates half the hidden dims of the input."""
|
146 |
+
x1 = x[..., : x.shape[-1] // 2]
|
147 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
148 |
+
return torch.cat((-x2, x1), dim=-1)
|
149 |
+
|
150 |
+
|
151 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
|
152 |
+
"""Applies Rotary Position Embedding to the query and key tensors.
|
153 |
+
|
154 |
+
Args:
|
155 |
+
q (`torch.Tensor`): The query tensor.
|
156 |
+
k (`torch.Tensor`): The key tensor.
|
157 |
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
158 |
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
159 |
+
position_ids (`torch.Tensor`, *optional*):
|
160 |
+
Deprecated and unused.
|
161 |
+
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
162 |
+
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
163 |
+
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
164 |
+
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
165 |
+
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
166 |
+
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
167 |
+
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
168 |
+
Returns:
|
169 |
+
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
170 |
+
"""
|
171 |
+
cos = cos.unsqueeze(unsqueeze_dim)
|
172 |
+
sin = sin.unsqueeze(unsqueeze_dim)
|
173 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
174 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
175 |
+
return q_embed, k_embed
|
176 |
+
|
177 |
+
|
178 |
+
class AprielMLP(nn.Module):
|
179 |
+
def __init__(self, config):
|
180 |
+
super().__init__()
|
181 |
+
self.config = config
|
182 |
+
self.hidden_size = config.hidden_size
|
183 |
+
self.intermediate_size = config.intermediate_size
|
184 |
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias)
|
185 |
+
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias)
|
186 |
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.mlp_bias)
|
187 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
188 |
+
|
189 |
+
def forward(self, x):
|
190 |
+
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
191 |
+
return down_proj
|
192 |
+
|
193 |
+
|
194 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
195 |
+
"""
|
196 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
197 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
198 |
+
"""
|
199 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
200 |
+
if n_rep == 1:
|
201 |
+
return hidden_states
|
202 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
203 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
204 |
+
|
205 |
+
|
206 |
+
def eager_attention_forward(
|
207 |
+
module: nn.Module,
|
208 |
+
query: torch.Tensor,
|
209 |
+
key: torch.Tensor,
|
210 |
+
value: torch.Tensor,
|
211 |
+
attention_mask: Optional[torch.Tensor],
|
212 |
+
scaling: float,
|
213 |
+
dropout: float = 0.0,
|
214 |
+
**kwargs,
|
215 |
+
):
|
216 |
+
key_states = repeat_kv(key, module.num_key_value_groups)
|
217 |
+
value_states = repeat_kv(value, module.num_key_value_groups)
|
218 |
+
|
219 |
+
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
|
220 |
+
if attention_mask is not None:
|
221 |
+
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
|
222 |
+
attn_weights = attn_weights + causal_mask
|
223 |
+
|
224 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
|
225 |
+
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
|
226 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
227 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
228 |
+
|
229 |
+
return attn_output, attn_weights
|
230 |
+
|
231 |
+
|
232 |
+
class AprielAttention(nn.Module):
|
233 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
234 |
+
|
235 |
+
def __init__(self, config: AprielConfig, layer_idx: int):
|
236 |
+
super().__init__()
|
237 |
+
self.config = config
|
238 |
+
self.layer_idx = layer_idx
|
239 |
+
self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
|
240 |
+
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
|
241 |
+
self.scaling = self.head_dim**-0.5
|
242 |
+
self.attention_dropout = config.attention_dropout
|
243 |
+
self.is_causal = True
|
244 |
+
|
245 |
+
self.q_proj = nn.Linear(
|
246 |
+
config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.attention_bias
|
247 |
+
)
|
248 |
+
self.k_proj = nn.Linear(
|
249 |
+
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
|
250 |
+
)
|
251 |
+
self.v_proj = nn.Linear(
|
252 |
+
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
|
253 |
+
)
|
254 |
+
self.o_proj = nn.Linear(
|
255 |
+
config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.attention_bias
|
256 |
+
)
|
257 |
+
|
258 |
+
def forward(
|
259 |
+
self,
|
260 |
+
hidden_states: torch.Tensor,
|
261 |
+
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
|
262 |
+
attention_mask: Optional[torch.Tensor],
|
263 |
+
past_key_value: Optional[Cache] = None,
|
264 |
+
cache_position: Optional[torch.LongTensor] = None,
|
265 |
+
**kwargs: Unpack[FlashAttentionKwargs],
|
266 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
267 |
+
input_shape = hidden_states.shape[:-1]
|
268 |
+
hidden_shape = (*input_shape, -1, self.head_dim)
|
269 |
+
|
270 |
+
query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
|
271 |
+
key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
|
272 |
+
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
|
273 |
+
|
274 |
+
cos, sin = position_embeddings
|
275 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
276 |
+
|
277 |
+
if past_key_value is not None:
|
278 |
+
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
279 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
280 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
281 |
+
|
282 |
+
attention_interface: Callable = eager_attention_forward
|
283 |
+
if self.config._attn_implementation != "eager":
|
284 |
+
if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False):
|
285 |
+
logger.warning_once(
|
286 |
+
"`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
|
287 |
+
'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
288 |
+
)
|
289 |
+
else:
|
290 |
+
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
|
291 |
+
|
292 |
+
attn_output, attn_weights = attention_interface(
|
293 |
+
self,
|
294 |
+
query_states,
|
295 |
+
key_states,
|
296 |
+
value_states,
|
297 |
+
attention_mask,
|
298 |
+
dropout=0.0 if not self.training else self.attention_dropout,
|
299 |
+
scaling=self.scaling,
|
300 |
+
**kwargs,
|
301 |
+
)
|
302 |
+
|
303 |
+
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
|
304 |
+
attn_output = self.o_proj(attn_output)
|
305 |
+
return attn_output, attn_weights
|
306 |
+
|
307 |
+
|
308 |
+
class AprielDecoderLayer(nn.Module):
|
309 |
+
def __init__(self, config: AprielConfig, layer_idx: int):
|
310 |
+
super().__init__()
|
311 |
+
self.hidden_size = config.hidden_size
|
312 |
+
|
313 |
+
self.self_attn = AprielAttention(config=config, layer_idx=layer_idx)
|
314 |
+
|
315 |
+
self.mlp = AprielMLP(config)
|
316 |
+
self.input_layernorm = AprielRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
317 |
+
self.post_attention_layernorm = AprielRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
318 |
+
|
319 |
+
def forward(
|
320 |
+
self,
|
321 |
+
hidden_states: torch.Tensor,
|
322 |
+
attention_mask: Optional[torch.Tensor] = None,
|
323 |
+
position_ids: Optional[torch.LongTensor] = None,
|
324 |
+
past_key_value: Optional[Cache] = None,
|
325 |
+
output_attentions: Optional[bool] = False,
|
326 |
+
use_cache: Optional[bool] = False,
|
327 |
+
cache_position: Optional[torch.LongTensor] = None,
|
328 |
+
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
|
329 |
+
**kwargs: Unpack[FlashAttentionKwargs],
|
330 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
331 |
+
residual = hidden_states
|
332 |
+
|
333 |
+
hidden_states = self.input_layernorm(hidden_states)
|
334 |
+
|
335 |
+
# Self Attention
|
336 |
+
hidden_states, self_attn_weights = self.self_attn(
|
337 |
+
hidden_states=hidden_states,
|
338 |
+
attention_mask=attention_mask,
|
339 |
+
position_ids=position_ids,
|
340 |
+
past_key_value=past_key_value,
|
341 |
+
output_attentions=output_attentions,
|
342 |
+
use_cache=use_cache,
|
343 |
+
cache_position=cache_position,
|
344 |
+
position_embeddings=position_embeddings,
|
345 |
+
**kwargs,
|
346 |
+
)
|
347 |
+
hidden_states = residual + hidden_states
|
348 |
+
|
349 |
+
# Fully Connected
|
350 |
+
residual = hidden_states
|
351 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
352 |
+
hidden_states = self.mlp(hidden_states)
|
353 |
+
hidden_states = residual + hidden_states
|
354 |
+
|
355 |
+
outputs = (hidden_states,)
|
356 |
+
if output_attentions:
|
357 |
+
outputs += (self_attn_weights,)
|
358 |
+
|
359 |
+
return outputs
|
360 |
+
|
361 |
+
|
362 |
+
APRIEL_START_DOCSTRING = r"""
|
363 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
364 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
365 |
+
etc.)
|
366 |
+
|
367 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
368 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
369 |
+
and behavior.
|
370 |
+
|
371 |
+
Parameters:
|
372 |
+
config ([`AprielConfig`]):
|
373 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
374 |
+
load the weights associated with the model, only the configuration. Check out the
|
375 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
376 |
+
"""
|
377 |
+
|
378 |
+
|
379 |
+
@add_start_docstrings(
|
380 |
+
"The bare Apriel Model outputting raw hidden-states without any specific head on top.",
|
381 |
+
APRIEL_START_DOCSTRING,
|
382 |
+
)
|
383 |
+
class AprielPreTrainedModel(PreTrainedModel):
|
384 |
+
config_class = AprielConfig
|
385 |
+
base_model_prefix = "model"
|
386 |
+
supports_gradient_checkpointing = True
|
387 |
+
_no_split_modules = ["AprielDecoderLayer"]
|
388 |
+
_skip_keys_device_placement = ["past_key_values"]
|
389 |
+
_supports_flash_attn_2 = True
|
390 |
+
_supports_sdpa = True
|
391 |
+
_supports_flex_attn = True
|
392 |
+
_supports_cache_class = True
|
393 |
+
_supports_quantized_cache = True
|
394 |
+
_supports_static_cache = True
|
395 |
+
_supports_attention_backend = True
|
396 |
+
|
397 |
+
def _init_weights(self, module):
|
398 |
+
std = self.config.initializer_range
|
399 |
+
if isinstance(module, nn.Linear):
|
400 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
401 |
+
if module.bias is not None:
|
402 |
+
module.bias.data.zero_()
|
403 |
+
elif isinstance(module, nn.Embedding):
|
404 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
405 |
+
if module.padding_idx is not None:
|
406 |
+
module.weight.data[module.padding_idx].zero_()
|
407 |
+
|
408 |
+
|
409 |
+
APRIEL_INPUTS_DOCSTRING = r"""
|
410 |
+
Args:
|
411 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
412 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
413 |
+
it.
|
414 |
+
|
415 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
416 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
417 |
+
|
418 |
+
[What are input IDs?](../glossary#input-ids)
|
419 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
420 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
421 |
+
|
422 |
+
- 1 for tokens that are **not masked**,
|
423 |
+
- 0 for tokens that are **masked**.
|
424 |
+
|
425 |
+
[What are attention masks?](../glossary#attention-mask)
|
426 |
+
|
427 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
428 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
429 |
+
|
430 |
+
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
|
431 |
+
`past_key_values`).
|
432 |
+
|
433 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
434 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
435 |
+
information on the default strategy.
|
436 |
+
|
437 |
+
- 1 indicates the head is **not masked**,
|
438 |
+
- 0 indicates the head is **masked**.
|
439 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
440 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
441 |
+
config.n_positions - 1]`.
|
442 |
+
|
443 |
+
[What are position IDs?](../glossary#position-ids)
|
444 |
+
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
|
445 |
+
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
446 |
+
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
|
447 |
+
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
|
448 |
+
|
449 |
+
Two formats are allowed:
|
450 |
+
- a [`~cache_utils.Cache`] instance, see our
|
451 |
+
[kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache);
|
452 |
+
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
453 |
+
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
|
454 |
+
cache format.
|
455 |
+
|
456 |
+
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
|
457 |
+
legacy cache format will be returned.
|
458 |
+
|
459 |
+
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
460 |
+
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
461 |
+
of shape `(batch_size, sequence_length)`.
|
462 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
463 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
464 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
465 |
+
model's internal embedding lookup matrix.
|
466 |
+
use_cache (`bool`, *optional*):
|
467 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
468 |
+
`past_key_values`).
|
469 |
+
output_attentions (`bool`, *optional*):
|
470 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
471 |
+
tensors for more detail.
|
472 |
+
output_hidden_states (`bool`, *optional*):
|
473 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
474 |
+
more detail.
|
475 |
+
return_dict (`bool`, *optional*):
|
476 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
477 |
+
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
478 |
+
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
|
479 |
+
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
|
480 |
+
the complete sequence length.
|
481 |
+
"""
|
482 |
+
|
483 |
+
|
484 |
+
@add_start_docstrings(
|
485 |
+
"The bare Apriel Model outputting raw hidden-states without any specific head on top.",
|
486 |
+
APRIEL_START_DOCSTRING,
|
487 |
+
)
|
488 |
+
class AprielModel(AprielPreTrainedModel):
|
489 |
+
"""
|
490 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`AprielDecoderLayer`]
|
491 |
+
|
492 |
+
Args:
|
493 |
+
config: AprielConfig
|
494 |
+
"""
|
495 |
+
|
496 |
+
def __init__(self, config: AprielConfig):
|
497 |
+
super().__init__(config)
|
498 |
+
self.padding_idx = config.pad_token_id
|
499 |
+
self.vocab_size = config.vocab_size
|
500 |
+
|
501 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
502 |
+
self.layers = nn.ModuleList(
|
503 |
+
[AprielDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
504 |
+
)
|
505 |
+
self.norm = AprielRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
506 |
+
self.rotary_emb = AprielRotaryEmbedding(config=config)
|
507 |
+
self.gradient_checkpointing = False
|
508 |
+
|
509 |
+
# Initialize weights and apply final processing
|
510 |
+
self.post_init()
|
511 |
+
|
512 |
+
def get_input_embeddings(self):
|
513 |
+
return self.embed_tokens
|
514 |
+
|
515 |
+
def set_input_embeddings(self, value):
|
516 |
+
self.embed_tokens = value
|
517 |
+
|
518 |
+
@add_start_docstrings_to_model_forward(APRIEL_INPUTS_DOCSTRING)
|
519 |
+
def forward(
|
520 |
+
self,
|
521 |
+
input_ids: torch.LongTensor = None,
|
522 |
+
attention_mask: Optional[torch.Tensor] = None,
|
523 |
+
position_ids: Optional[torch.LongTensor] = None,
|
524 |
+
past_key_values: Optional[Cache] = None,
|
525 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
526 |
+
use_cache: Optional[bool] = None,
|
527 |
+
output_attentions: Optional[bool] = None,
|
528 |
+
output_hidden_states: Optional[bool] = None,
|
529 |
+
return_dict: Optional[bool] = None,
|
530 |
+
cache_position: Optional[torch.LongTensor] = None,
|
531 |
+
**flash_attn_kwargs: Unpack[FlashAttentionKwargs],
|
532 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
533 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
534 |
+
output_hidden_states = (
|
535 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
536 |
+
)
|
537 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
538 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
539 |
+
|
540 |
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
541 |
+
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
|
542 |
+
|
543 |
+
if self.gradient_checkpointing and self.training and use_cache:
|
544 |
+
logger.warning_once(
|
545 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
|
546 |
+
)
|
547 |
+
use_cache = False
|
548 |
+
|
549 |
+
if inputs_embeds is None:
|
550 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
551 |
+
|
552 |
+
if use_cache and past_key_values is None:
|
553 |
+
past_key_values = DynamicCache()
|
554 |
+
|
555 |
+
if cache_position is None:
|
556 |
+
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
557 |
+
cache_position = torch.arange(
|
558 |
+
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
|
559 |
+
)
|
560 |
+
|
561 |
+
if position_ids is None:
|
562 |
+
position_ids = cache_position.unsqueeze(0)
|
563 |
+
|
564 |
+
causal_mask = self._update_causal_mask(
|
565 |
+
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
|
566 |
+
)
|
567 |
+
|
568 |
+
hidden_states = inputs_embeds
|
569 |
+
|
570 |
+
# create position embeddings to be shared across the decoder layers
|
571 |
+
position_embeddings = self.rotary_emb(hidden_states, position_ids)
|
572 |
+
|
573 |
+
# decoder layers
|
574 |
+
all_hidden_states = () if output_hidden_states else None
|
575 |
+
all_self_attns = () if output_attentions else None
|
576 |
+
|
577 |
+
for decoder_layer in self.layers[: self.config.num_hidden_layers]:
|
578 |
+
if output_hidden_states:
|
579 |
+
all_hidden_states += (hidden_states,)
|
580 |
+
|
581 |
+
if self.gradient_checkpointing and self.training:
|
582 |
+
layer_outputs = self._gradient_checkpointing_func(
|
583 |
+
decoder_layer.__call__,
|
584 |
+
hidden_states,
|
585 |
+
causal_mask,
|
586 |
+
position_ids,
|
587 |
+
past_key_values,
|
588 |
+
output_attentions,
|
589 |
+
use_cache,
|
590 |
+
cache_position,
|
591 |
+
position_embeddings,
|
592 |
+
)
|
593 |
+
else:
|
594 |
+
layer_outputs = decoder_layer(
|
595 |
+
hidden_states,
|
596 |
+
attention_mask=causal_mask,
|
597 |
+
position_ids=position_ids,
|
598 |
+
past_key_value=past_key_values,
|
599 |
+
output_attentions=output_attentions,
|
600 |
+
use_cache=use_cache,
|
601 |
+
cache_position=cache_position,
|
602 |
+
position_embeddings=position_embeddings,
|
603 |
+
**flash_attn_kwargs,
|
604 |
+
)
|
605 |
+
|
606 |
+
hidden_states = layer_outputs[0]
|
607 |
+
|
608 |
+
if output_attentions:
|
609 |
+
all_self_attns += (layer_outputs[1],)
|
610 |
+
|
611 |
+
hidden_states = self.norm(hidden_states)
|
612 |
+
|
613 |
+
# add hidden states from the last decoder layer
|
614 |
+
if output_hidden_states:
|
615 |
+
all_hidden_states += (hidden_states,)
|
616 |
+
|
617 |
+
output = BaseModelOutputWithPast(
|
618 |
+
last_hidden_state=hidden_states,
|
619 |
+
past_key_values=past_key_values if use_cache else None,
|
620 |
+
hidden_states=all_hidden_states,
|
621 |
+
attentions=all_self_attns,
|
622 |
+
)
|
623 |
+
return output if return_dict else output.to_tuple()
|
624 |
+
|
625 |
+
def _update_causal_mask(
|
626 |
+
self,
|
627 |
+
attention_mask: torch.Tensor,
|
628 |
+
input_tensor: torch.Tensor,
|
629 |
+
cache_position: torch.Tensor,
|
630 |
+
past_key_values: Cache,
|
631 |
+
output_attentions: bool,
|
632 |
+
):
|
633 |
+
if self.config._attn_implementation == "flash_attention_2":
|
634 |
+
if attention_mask is not None and (attention_mask == 0.0).any():
|
635 |
+
return attention_mask
|
636 |
+
return None
|
637 |
+
|
638 |
+
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
|
639 |
+
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
|
640 |
+
# to infer the attention mask.
|
641 |
+
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
642 |
+
using_static_cache = isinstance(past_key_values, StaticCache)
|
643 |
+
|
644 |
+
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
|
645 |
+
if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
|
646 |
+
if AttentionMaskConverter._ignore_causal_mask_sdpa(
|
647 |
+
attention_mask,
|
648 |
+
inputs_embeds=input_tensor,
|
649 |
+
past_key_values_length=past_seen_tokens,
|
650 |
+
is_training=self.training,
|
651 |
+
):
|
652 |
+
return None
|
653 |
+
|
654 |
+
dtype, device = input_tensor.dtype, input_tensor.device
|
655 |
+
sequence_length = input_tensor.shape[1]
|
656 |
+
if using_static_cache:
|
657 |
+
target_length = past_key_values.get_max_cache_shape()
|
658 |
+
else:
|
659 |
+
target_length = (
|
660 |
+
attention_mask.shape[-1]
|
661 |
+
if isinstance(attention_mask, torch.Tensor)
|
662 |
+
else past_seen_tokens + sequence_length + 1
|
663 |
+
)
|
664 |
+
|
665 |
+
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
|
666 |
+
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
|
667 |
+
attention_mask,
|
668 |
+
sequence_length=sequence_length,
|
669 |
+
target_length=target_length,
|
670 |
+
dtype=dtype,
|
671 |
+
device=device,
|
672 |
+
cache_position=cache_position,
|
673 |
+
batch_size=input_tensor.shape[0],
|
674 |
+
)
|
675 |
+
|
676 |
+
if (
|
677 |
+
self.config._attn_implementation == "sdpa"
|
678 |
+
and attention_mask is not None
|
679 |
+
and attention_mask.device.type in ["cuda", "xpu"]
|
680 |
+
and not output_attentions
|
681 |
+
):
|
682 |
+
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
|
683 |
+
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
|
684 |
+
# Details: https://github.com/pytorch/pytorch/issues/110213
|
685 |
+
min_dtype = torch.finfo(dtype).min
|
686 |
+
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
|
687 |
+
|
688 |
+
return causal_mask
|
689 |
+
|
690 |
+
@staticmethod
|
691 |
+
def _prepare_4d_causal_attention_mask_with_cache_position(
|
692 |
+
attention_mask: torch.Tensor,
|
693 |
+
sequence_length: int,
|
694 |
+
target_length: int,
|
695 |
+
dtype: torch.dtype,
|
696 |
+
device: torch.device,
|
697 |
+
cache_position: torch.Tensor,
|
698 |
+
batch_size: int,
|
699 |
+
**kwargs,
|
700 |
+
):
|
701 |
+
"""
|
702 |
+
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
|
703 |
+
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
|
704 |
+
|
705 |
+
Args:
|
706 |
+
attention_mask (`torch.Tensor`):
|
707 |
+
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
|
708 |
+
`(batch_size, 1, query_length, key_value_length)`.
|
709 |
+
sequence_length (`int`):
|
710 |
+
The sequence length being processed.
|
711 |
+
target_length (`int`):
|
712 |
+
The target length: when generating with static cache, the mask should be as long as the static cache,
|
713 |
+
to account for the 0 padding, the part of the cache that is not filled yet.
|
714 |
+
dtype (`torch.dtype`):
|
715 |
+
The dtype to use for the 4D attention mask.
|
716 |
+
device (`torch.device`):
|
717 |
+
The device to place the 4D attention mask on.
|
718 |
+
cache_position (`torch.Tensor`):
|
719 |
+
Indices depicting the position of the input sequence tokens in the sequence.
|
720 |
+
batch_size (`torch.Tensor`):
|
721 |
+
Batch size.
|
722 |
+
"""
|
723 |
+
if attention_mask is not None and attention_mask.dim() == 4:
|
724 |
+
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
|
725 |
+
causal_mask = attention_mask
|
726 |
+
else:
|
727 |
+
min_dtype = torch.finfo(dtype).min
|
728 |
+
causal_mask = torch.full(
|
729 |
+
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
|
730 |
+
)
|
731 |
+
if sequence_length != 1:
|
732 |
+
causal_mask = torch.triu(causal_mask, diagonal=1)
|
733 |
+
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
|
734 |
+
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
|
735 |
+
if attention_mask is not None:
|
736 |
+
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
|
737 |
+
mask_length = attention_mask.shape[-1]
|
738 |
+
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to(
|
739 |
+
causal_mask.device
|
740 |
+
)
|
741 |
+
padding_mask = padding_mask == 0
|
742 |
+
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
|
743 |
+
padding_mask, min_dtype
|
744 |
+
)
|
745 |
+
|
746 |
+
return causal_mask
|
747 |
+
|
748 |
+
|
749 |
+
class KwargsForCausalLM(FlashAttentionKwargs, LossKwargs): ...
|
750 |
+
|
751 |
+
|
752 |
+
class AprielForCausalLM(AprielPreTrainedModel, GenerationMixin):
|
753 |
+
_tied_weights_keys = ["lm_head.weight"]
|
754 |
+
_tp_plan = {"lm_head": "colwise_rep"}
|
755 |
+
_pp_plan = {"lm_head": (["hidden_states"], ["logits"])}
|
756 |
+
|
757 |
+
def __init__(self, config):
|
758 |
+
super().__init__(config)
|
759 |
+
self.model = AprielModel(config)
|
760 |
+
self.vocab_size = config.vocab_size
|
761 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
762 |
+
|
763 |
+
# Initialize weights and apply final processing
|
764 |
+
self.post_init()
|
765 |
+
|
766 |
+
def get_input_embeddings(self):
|
767 |
+
return self.model.embed_tokens
|
768 |
+
|
769 |
+
def set_input_embeddings(self, value):
|
770 |
+
self.model.embed_tokens = value
|
771 |
+
|
772 |
+
def get_output_embeddings(self):
|
773 |
+
return self.lm_head
|
774 |
+
|
775 |
+
def set_output_embeddings(self, new_embeddings):
|
776 |
+
self.lm_head = new_embeddings
|
777 |
+
|
778 |
+
def set_decoder(self, decoder):
|
779 |
+
self.model = decoder
|
780 |
+
|
781 |
+
def get_decoder(self):
|
782 |
+
return self.model
|
783 |
+
|
784 |
+
@deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
|
785 |
+
@add_start_docstrings_to_model_forward(APRIEL_INPUTS_DOCSTRING)
|
786 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
787 |
+
def forward(
|
788 |
+
self,
|
789 |
+
input_ids: torch.LongTensor = None,
|
790 |
+
attention_mask: Optional[torch.Tensor] = None,
|
791 |
+
position_ids: Optional[torch.LongTensor] = None,
|
792 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
793 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
794 |
+
labels: Optional[torch.LongTensor] = None,
|
795 |
+
use_cache: Optional[bool] = None,
|
796 |
+
output_attentions: Optional[bool] = None,
|
797 |
+
output_hidden_states: Optional[bool] = None,
|
798 |
+
return_dict: Optional[bool] = None,
|
799 |
+
cache_position: Optional[torch.LongTensor] = None,
|
800 |
+
logits_to_keep: Union[int, torch.Tensor] = 0,
|
801 |
+
**kwargs: Unpack[KwargsForCausalLM],
|
802 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
803 |
+
r"""
|
804 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
805 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
806 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
807 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
808 |
+
|
809 |
+
logits_to_keep (`int` or `torch.Tensor`, *optional*):
|
810 |
+
If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
|
811 |
+
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
|
812 |
+
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
|
813 |
+
If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
|
814 |
+
This is useful when using packed tensor format (single dimension for batch and sequence length).
|
815 |
+
|
816 |
+
Returns:
|
817 |
+
|
818 |
+
Example:
|
819 |
+
|
820 |
+
```python
|
821 |
+
>>> from transformers import AutoTokenizer, AprielForCausalLM
|
822 |
+
|
823 |
+
>>> model = AprielForCausalLM.from_pretrained("ServiceNow-AI/Apriel-5B-Instruct")
|
824 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("ServiceNow-AI/Apriel-5B-Instruct")
|
825 |
+
|
826 |
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
827 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
828 |
+
|
829 |
+
>>> # Generate
|
830 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
831 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
832 |
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
833 |
+
```"""
|
834 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
835 |
+
output_hidden_states = (
|
836 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
837 |
+
)
|
838 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
839 |
+
|
840 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
841 |
+
outputs = self.model(
|
842 |
+
input_ids=input_ids,
|
843 |
+
attention_mask=attention_mask,
|
844 |
+
position_ids=position_ids,
|
845 |
+
past_key_values=past_key_values,
|
846 |
+
inputs_embeds=inputs_embeds,
|
847 |
+
use_cache=use_cache,
|
848 |
+
output_attentions=output_attentions,
|
849 |
+
output_hidden_states=output_hidden_states,
|
850 |
+
return_dict=return_dict,
|
851 |
+
cache_position=cache_position,
|
852 |
+
**kwargs,
|
853 |
+
)
|
854 |
+
|
855 |
+
hidden_states = outputs[0]
|
856 |
+
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
857 |
+
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
|
858 |
+
logits = self.lm_head(hidden_states[:, slice_indices, :])
|
859 |
+
|
860 |
+
loss = None
|
861 |
+
if labels is not None:
|
862 |
+
loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)
|
863 |
+
|
864 |
+
if not return_dict:
|
865 |
+
output = (logits,) + outputs[1:]
|
866 |
+
return (loss,) + output if loss is not None else output
|
867 |
+
|
868 |
+
return CausalLMOutputWithPast(
|
869 |
+
loss=loss,
|
870 |
+
logits=logits,
|
871 |
+
past_key_values=outputs.past_key_values,
|
872 |
+
hidden_states=outputs.hidden_states,
|
873 |
+
attentions=outputs.attentions,
|
874 |
+
)
|
875 |
+
|
876 |
+
|
877 |
+
@add_start_docstrings(
|
878 |
+
"""
|
879 |
+
The Apriel Model transformer with a sequence classification head on top (linear layer).
|
880 |
+
|
881 |
+
[`AprielForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
882 |
+
(e.g. GPT-2) do.
|
883 |
+
|
884 |
+
Since it does classification on the last token, it requires to know the position of the last token. If a
|
885 |
+
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
886 |
+
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
887 |
+
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
888 |
+
each row of the batch).
|
889 |
+
""",
|
890 |
+
APRIEL_START_DOCSTRING,
|
891 |
+
)
|
892 |
+
class AprielForSequenceClassification(AprielPreTrainedModel):
|
893 |
+
def __init__(self, config):
|
894 |
+
super().__init__(config)
|
895 |
+
self.num_labels = config.num_labels
|
896 |
+
self.model = AprielModel(config)
|
897 |
+
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
|
898 |
+
|
899 |
+
# Initialize weights and apply final processing
|
900 |
+
self.post_init()
|
901 |
+
|
902 |
+
def get_input_embeddings(self):
|
903 |
+
return self.model.embed_tokens
|
904 |
+
|
905 |
+
def set_input_embeddings(self, value):
|
906 |
+
self.model.embed_tokens = value
|
907 |
+
|
908 |
+
@add_start_docstrings_to_model_forward(APRIEL_INPUTS_DOCSTRING)
|
909 |
+
def forward(
|
910 |
+
self,
|
911 |
+
input_ids: Optional[torch.LongTensor] = None,
|
912 |
+
attention_mask: Optional[torch.Tensor] = None,
|
913 |
+
position_ids: Optional[torch.LongTensor] = None,
|
914 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
915 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
916 |
+
labels: Optional[torch.LongTensor] = None,
|
917 |
+
use_cache: Optional[bool] = None,
|
918 |
+
output_attentions: Optional[bool] = None,
|
919 |
+
output_hidden_states: Optional[bool] = None,
|
920 |
+
return_dict: Optional[bool] = None,
|
921 |
+
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
922 |
+
r"""
|
923 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
924 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
925 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
926 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
927 |
+
"""
|
928 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
929 |
+
|
930 |
+
transformer_outputs = self.model(
|
931 |
+
input_ids,
|
932 |
+
attention_mask=attention_mask,
|
933 |
+
position_ids=position_ids,
|
934 |
+
past_key_values=past_key_values,
|
935 |
+
inputs_embeds=inputs_embeds,
|
936 |
+
use_cache=use_cache,
|
937 |
+
output_attentions=output_attentions,
|
938 |
+
output_hidden_states=output_hidden_states,
|
939 |
+
return_dict=return_dict,
|
940 |
+
)
|
941 |
+
hidden_states = transformer_outputs[0]
|
942 |
+
logits = self.score(hidden_states)
|
943 |
+
|
944 |
+
if input_ids is not None:
|
945 |
+
batch_size = input_ids.shape[0]
|
946 |
+
else:
|
947 |
+
batch_size = inputs_embeds.shape[0]
|
948 |
+
|
949 |
+
if self.config.pad_token_id is None and batch_size != 1:
|
950 |
+
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
|
951 |
+
if self.config.pad_token_id is None:
|
952 |
+
last_non_pad_token = -1
|
953 |
+
elif input_ids is not None:
|
954 |
+
# To handle both left- and right- padding, we take the rightmost token that is not equal to pad_token_id
|
955 |
+
non_pad_mask = (input_ids != self.config.pad_token_id).to(logits.device, torch.int32)
|
956 |
+
token_indices = torch.arange(input_ids.shape[-1], device=logits.device)
|
957 |
+
last_non_pad_token = (token_indices * non_pad_mask).argmax(-1)
|
958 |
+
else:
|
959 |
+
last_non_pad_token = -1
|
960 |
+
logger.warning_once(
|
961 |
+
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
|
962 |
+
"unexpected if using padding tokens in conjunction with `inputs_embeds.`"
|
963 |
+
)
|
964 |
+
|
965 |
+
pooled_logits = logits[torch.arange(batch_size, device=logits.device), last_non_pad_token]
|
966 |
+
|
967 |
+
loss = None
|
968 |
+
if labels is not None:
|
969 |
+
loss = self.loss_function(logits=logits, labels=labels, pooled_logits=pooled_logits, config=self.config)
|
970 |
+
|
971 |
+
if not return_dict:
|
972 |
+
output = (pooled_logits,) + transformer_outputs[1:]
|
973 |
+
return ((loss,) + output) if loss is not None else output
|
974 |
+
|
975 |
+
return SequenceClassifierOutputWithPast(
|
976 |
+
loss=loss,
|
977 |
+
logits=pooled_logits,
|
978 |
+
past_key_values=transformer_outputs.past_key_values,
|
979 |
+
hidden_states=transformer_outputs.hidden_states,
|
980 |
+
attentions=transformer_outputs.attentions,
|
981 |
+
)
|
982 |
+
|
983 |
+
|
984 |
+
@add_start_docstrings(
|
985 |
+
"""
|
986 |
+
The Apriel Model transformer with a span classification head on top for extractive question-answering tasks like
|
987 |
+
SQuAD (a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
988 |
+
""",
|
989 |
+
APRIEL_START_DOCSTRING,
|
990 |
+
)
|
991 |
+
class AprielForQuestionAnswering(AprielPreTrainedModel):
|
992 |
+
base_model_prefix = "transformer"
|
993 |
+
|
994 |
+
def __init__(self, config):
|
995 |
+
super().__init__(config)
|
996 |
+
self.transformer = AprielModel(config)
|
997 |
+
self.qa_outputs = nn.Linear(config.hidden_size, 2)
|
998 |
+
|
999 |
+
# Initialize weights and apply final processing
|
1000 |
+
self.post_init()
|
1001 |
+
|
1002 |
+
def get_input_embeddings(self):
|
1003 |
+
return self.transformer.embed_tokens
|
1004 |
+
|
1005 |
+
def set_input_embeddings(self, value):
|
1006 |
+
self.transformer.embed_tokens = value
|
1007 |
+
|
1008 |
+
@add_start_docstrings_to_model_forward(APRIEL_INPUTS_DOCSTRING)
|
1009 |
+
def forward(
|
1010 |
+
self,
|
1011 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1012 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1013 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1014 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
1015 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1016 |
+
start_positions: Optional[torch.LongTensor] = None,
|
1017 |
+
end_positions: Optional[torch.LongTensor] = None,
|
1018 |
+
output_attentions: Optional[bool] = None,
|
1019 |
+
output_hidden_states: Optional[bool] = None,
|
1020 |
+
return_dict: Optional[bool] = None,
|
1021 |
+
**kwargs,
|
1022 |
+
) -> Union[Tuple, QuestionAnsweringModelOutput]:
|
1023 |
+
r"""
|
1024 |
+
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1025 |
+
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
1026 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1027 |
+
are not taken into account for computing the loss.
|
1028 |
+
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1029 |
+
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
1030 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1031 |
+
are not taken into account for computing the loss.
|
1032 |
+
"""
|
1033 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1034 |
+
|
1035 |
+
outputs = self.transformer(
|
1036 |
+
input_ids,
|
1037 |
+
attention_mask=attention_mask,
|
1038 |
+
position_ids=position_ids,
|
1039 |
+
past_key_values=past_key_values,
|
1040 |
+
inputs_embeds=inputs_embeds,
|
1041 |
+
output_attentions=output_attentions,
|
1042 |
+
output_hidden_states=output_hidden_states,
|
1043 |
+
return_dict=return_dict,
|
1044 |
+
)
|
1045 |
+
|
1046 |
+
sequence_output = outputs[0]
|
1047 |
+
|
1048 |
+
logits = self.qa_outputs(sequence_output)
|
1049 |
+
start_logits, end_logits = logits.split(1, dim=-1)
|
1050 |
+
start_logits = start_logits.squeeze(-1).contiguous()
|
1051 |
+
end_logits = end_logits.squeeze(-1).contiguous()
|
1052 |
+
|
1053 |
+
loss = None
|
1054 |
+
if start_positions is not None and end_positions is not None:
|
1055 |
+
loss = self.loss_function(start_logits, end_logits, start_positions, end_positions, **kwargs)
|
1056 |
+
|
1057 |
+
if not return_dict:
|
1058 |
+
output = (start_logits, end_logits) + outputs[2:]
|
1059 |
+
return ((loss,) + output) if loss is not None else output
|
1060 |
+
|
1061 |
+
return QuestionAnsweringModelOutput(
|
1062 |
+
loss=loss,
|
1063 |
+
start_logits=start_logits,
|
1064 |
+
end_logits=end_logits,
|
1065 |
+
hidden_states=outputs.hidden_states,
|
1066 |
+
attentions=outputs.attentions,
|
1067 |
+
)
|
1068 |
+
|
1069 |
+
|
1070 |
+
@add_start_docstrings(
|
1071 |
+
"""
|
1072 |
+
The Apriel Model transformer with a token classification head on top (a linear layer on top of the hidden-states
|
1073 |
+
output) e.g. for Named-Entity-Recognition (NER) tasks.
|
1074 |
+
""",
|
1075 |
+
APRIEL_START_DOCSTRING,
|
1076 |
+
)
|
1077 |
+
class AprielForTokenClassification(AprielPreTrainedModel):
|
1078 |
+
def __init__(self, config):
|
1079 |
+
super().__init__(config)
|
1080 |
+
self.num_labels = config.num_labels
|
1081 |
+
self.model = AprielModel(config)
|
1082 |
+
if getattr(config, "classifier_dropout", None) is not None:
|
1083 |
+
classifier_dropout = config.classifier_dropout
|
1084 |
+
elif getattr(config, "hidden_dropout", None) is not None:
|
1085 |
+
classifier_dropout = config.hidden_dropout
|
1086 |
+
else:
|
1087 |
+
classifier_dropout = 0.1
|
1088 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
1089 |
+
self.score = nn.Linear(config.hidden_size, config.num_labels)
|
1090 |
+
|
1091 |
+
# Initialize weights and apply final processing
|
1092 |
+
self.post_init()
|
1093 |
+
|
1094 |
+
def get_input_embeddings(self):
|
1095 |
+
return self.model.embed_tokens
|
1096 |
+
|
1097 |
+
def set_input_embeddings(self, value):
|
1098 |
+
self.model.embed_tokens = value
|
1099 |
+
|
1100 |
+
@add_start_docstrings_to_model_forward(APRIEL_INPUTS_DOCSTRING)
|
1101 |
+
@add_code_sample_docstrings(
|
1102 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1103 |
+
output_type=TokenClassifierOutput,
|
1104 |
+
config_class=_CONFIG_FOR_DOC,
|
1105 |
+
)
|
1106 |
+
def forward(
|
1107 |
+
self,
|
1108 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1109 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1110 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1111 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1112 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1113 |
+
labels: Optional[torch.LongTensor] = None,
|
1114 |
+
use_cache: Optional[bool] = None,
|
1115 |
+
output_attentions: Optional[bool] = None,
|
1116 |
+
output_hidden_states: Optional[bool] = None,
|
1117 |
+
return_dict: Optional[bool] = None,
|
1118 |
+
) -> Union[Tuple, TokenClassifierOutput]:
|
1119 |
+
r"""
|
1120 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1121 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1122 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1123 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1124 |
+
"""
|
1125 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1126 |
+
|
1127 |
+
outputs = self.model(
|
1128 |
+
input_ids,
|
1129 |
+
attention_mask=attention_mask,
|
1130 |
+
position_ids=position_ids,
|
1131 |
+
past_key_values=past_key_values,
|
1132 |
+
inputs_embeds=inputs_embeds,
|
1133 |
+
use_cache=use_cache,
|
1134 |
+
output_attentions=output_attentions,
|
1135 |
+
output_hidden_states=output_hidden_states,
|
1136 |
+
return_dict=return_dict,
|
1137 |
+
)
|
1138 |
+
sequence_output = outputs[0]
|
1139 |
+
sequence_output = self.dropout(sequence_output)
|
1140 |
+
logits = self.score(sequence_output)
|
1141 |
+
|
1142 |
+
loss = None
|
1143 |
+
if labels is not None:
|
1144 |
+
loss = self.loss_function(logits, labels, self.config)
|
1145 |
+
|
1146 |
+
if not return_dict:
|
1147 |
+
output = (logits,) + outputs[2:]
|
1148 |
+
return ((loss,) + output) if loss is not None else output
|
1149 |
+
|
1150 |
+
return TokenClassifierOutput(
|
1151 |
+
loss=loss,
|
1152 |
+
logits=logits,
|
1153 |
+
hidden_states=outputs.hidden_states,
|
1154 |
+
attentions=outputs.attentions,
|
1155 |
+
)
|
1156 |
+
|
1157 |
+
|
1158 |
+
__all__ = [
|
1159 |
+
"AprielForCausalLM",
|
1160 |
+
"AprielModel",
|
1161 |
+
"AprielPreTrainedModel",
|
1162 |
+
"AprielForSequenceClassification",
|
1163 |
+
"AprielForQuestionAnswering",
|
1164 |
+
"AprielForTokenClassification",
|
1165 |
+
]
|
special_tokens_map.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "</s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "</s>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"unk_token": {
|
24 |
+
"content": "<unk>",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
}
|
30 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b0240ce510f08e6c2041724e9043e33be9d251d1e4a4d94eb68cd47b954b61d2
|
3 |
+
size 17078292
|
tokenizer_config.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|