File size: 2,864 Bytes
4211d50
 
 
 
 
 
 
 
3d82009
 
 
 
 
4211d50
 
 
 
 
 
 
 
 
 
 
3d82009
 
 
 
 
 
 
 
4211d50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d82009
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4211d50
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
---
library_name: transformers
language:
- en
license: apache-2.0
base_model: openai/whisper-medium
tags:
- generated_from_trainer
metrics:
- wer
- precision
- recall
- f1
model-index:
- name: ./whisper-medium-ea_5hr_v2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# ./whisper-medium-ea_5hr_v2

This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the Afrispeech-200 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4999
- Wer Ortho: 0.2185
- Wer: 0.1579
- Cer: 0.0705
- Precision: 0.9097
- Recall: 0.9048
- F1: 0.9068

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_steps: 50
- training_steps: 500
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Wer Ortho | Wer    | Cer    | Precision | Recall | F1     |
|:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:---------:|:------:|:------:|
| 0.5036        | 0.1179 | 50   | 0.6665          | 0.2366    | 0.1752 | 0.0784 | 0.9011    | 0.8964 | 0.8982 |
| 0.5931        | 0.2358 | 100  | 0.5603          | 0.2211    | 0.1622 | 0.0689 | 0.9073    | 0.9022 | 0.9043 |
| 0.5468        | 0.3538 | 150  | 0.5329          | 0.2344    | 0.1807 | 0.0911 | 0.9033    | 0.8938 | 0.8974 |
| 0.5159        | 0.4717 | 200  | 0.5213          | 0.2247    | 0.1675 | 0.0814 | 0.9084    | 0.9044 | 0.9058 |
| 0.4744        | 0.5896 | 250  | 0.5160          | 0.2332    | 0.1703 | 0.0805 | 0.9064    | 0.8987 | 0.9016 |
| 0.4753        | 0.7075 | 300  | 0.5132          | 0.2116    | 0.1536 | 0.0661 | 0.9097    | 0.9061 | 0.9074 |
| 0.5142        | 0.8255 | 350  | 0.4989          | 0.2272    | 0.1646 | 0.0755 | 0.9063    | 0.9023 | 0.9036 |
| 0.4951        | 0.9434 | 400  | 0.4928          | 0.2152    | 0.1618 | 0.0713 | 0.9098    | 0.9062 | 0.9073 |
| 0.2467        | 1.0613 | 450  | 0.4990          | 0.2084    | 0.1510 | 0.0648 | 0.9155    | 0.9106 | 0.9126 |
| 0.211         | 1.1792 | 500  | 0.4999          | 0.2185    | 0.1579 | 0.0705 | 0.9097    | 0.9048 | 0.9068 |


### Framework versions

- Transformers 4.52.1
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.1