--- library_name: transformers license: apache-2.0 base_model: Shekswess/trlm-stage-2-sft-final-2 tags: - trl - dpo - preference-alignment - reasoning - generated_from_trainer model-index: - name: trlm-stage-3-dpo-final-2 results: [] --- # Tiny Reasoning Language Model (trlm-135) ![image/png](https://github.com/user-attachments/assets/5f453496-8180-4cf4-94da-26ebbe1159d4) ## Table of Contents 1. [Model Summary](#model-summary) 2. [Post-Training Pipeline](#post-training-pipeline) 3. [How to use](#how-to-use) 4. [Training](#training) 5. [Evaluation](#evaluation) 6. [Limitations](#limitations) 7. [Acknowledgements](#acknowledgements) 8. [License](#license) --- ## Model Summary The **Tiny Reasoning Language Model (trlm-135)** is a **135M parameter** research prototype designed to study how small models can learn step-by-step reasoning. It was built on top of [SmolLM2-135M-Instruct](https://huggingface.co/HuggingFaceTB/SmolLM2-135M-Instruct) and fine-tuned through a **3-stage pipeline**: * **[Stage 1 SFT](https://huggingface.co/Shekswess/trlm-stage-1-sft-final-2)**: general instruction tuning (non-reasoning). * **[Stage 2 SFT](https://huggingface.co/Shekswess/trlm-stage-2-sft-final-2)**: reasoning traces with `` tags. * **[Stage 3 DPO](https://huggingface.co/Shekswess/trlm-stage-3-dpo-final-2)**: preference alignment for reasoning style. The **code** for everything can be found **[here](https://github.com/Shekswess/tiny-reasoning-language-model/blob/main/README.md)** --- ## Post-Training Pipeline image --- ## How to use ```bash pip install -U transformers accelerate ``` ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "Shekswess/trlm-135m" device = "cuda" # or "cpu" # Load tokenizer & model tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained( model_name, ).to(device) # Example prompt prompt = "Give me a brief explanation of gravity in simple terms." messages = [ {"role": "user", "content": prompt} ] # Apply chat template text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, ) inputs = tokenizer([text], return_tensors="pt").to(model.device) # Generate outputs = model.generate(**inputs, max_new_tokens=256) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` > [!TIP] > For reasoning-heavy tasks, set `temperature=0.6` and `top_p=0.95`. --- ## Training ### Model * **Architecture**: Decoder-only transformer (SmolLM2 backbone which infact is Llama 3 based model). * **Parameters**: ~135M. * **Precision**: mix-precision (bfloat16) during training. ### Software & Hardware * **Training Frameworks**: PyTorch (ROCm), Hugging Face Transformers & TRL. * **Hardware**: AMD MI300X (192GB VRAM, 224GB RAM). **Special thanks to [@HotAisle](https://x.com/HotAisle)** ### Training Stages 1. **Stage 1 – SFT (non-reasoning)** * ~58k samples, everyday conversations & instruction following. 2. **Stage 2 – SFT (reasoning)** * ~78k samples with `` segments. 3. **Stage 3 – DPO (alignment)** * ~50k preference pairs (chosen vs. rejected reasoning traces). --- ## Evaluation Evaluation was done with `lm-eval-harness`: | **Benchmark** | **Tiny Reasoning Language Model (trlm-135M)** | **SmolLM2-135M-Instruct** | **Improvements** | | -------------------- | ---------------------------- | ------------------------- | ---------------------------- | | **ARC Challenge** | **40.61** (avg) | 37.3 (avg) | **+3.31** | | **BBH** | **36.80** (3-shot) | 28.2 (3-shot) | **+8.6** | | **BoolQ** | **62.17** | – | N/A | | **GSM8K** | **2.59** (5-shot) | 1.4 (5-shot) | **+1.19** | | **IFEval** | **35.49** (avg) | 29.9 (avg) | **+5.59** | | **MMLU** | **34.95** | 29.3 | **+5.65** | | **PIQA** | **64.91** | 66.3 | **–1.39** | | **HellaSwag** | – | 40.9 | N/A | | **MT-Bench** | – | 19.8 | N/A | --- ## Limitations * **Not production-ready**: hallucinations and logical errors are frequent. * **Small size**: limited general knowledge and reasoning depth. * **English-only**: multilingual capabilities not explored. --- ## Acknowledgements - [@HotAisle](https://x.com/HotAisle) for providing the compute resources to train all three stages on a awesome AMD MI300x setup. - [@mkurman88](https://x.com/mkurman88) for ideas, feedback and code samples. - [HuggingFaceTB team](https://huggingface.co/HuggingFaceTB) for SmolLM2-135M-Instruct model and the Smoltalk2 dataset collection. - [@scottgeng00](https://huggingface.co/scottgeng00) for the OLmO-3-Preference-Mix-Deltas dataset. - [@eliebakouchi](https://x.com/eliebakouch) for help with the tokenization. --- ## License [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0) ---