Upload fine-tuned TinyLlama e-commerce chatbot with LoRA adapter
Browse files- README.md +72 -0
- adapter_config.json +39 -0
- adapter_model.safetensors +3 -0
- special_tokens_map.json +30 -0
- tokenizer.json +0 -0
- tokenizer_config.json +44 -0
README.md
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0
|
4 |
+
tags:
|
5 |
+
- fine-tuned
|
6 |
+
- e-commerce
|
7 |
+
- chatbot
|
8 |
+
- lora
|
9 |
+
- peft
|
10 |
+
language:
|
11 |
+
- en
|
12 |
+
pipeline_tag: text-generation
|
13 |
+
---
|
14 |
+
|
15 |
+
# TinyLlama-ECommerce-Chatbot
|
16 |
+
|
17 |
+
This is a fine-tuned version of [TinyLlama/TinyLlama-1.1B-Chat-v1.0](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0) for e-commerce customer service chatbot applications.
|
18 |
+
|
19 |
+
## Model Details
|
20 |
+
|
21 |
+
- **Base Model**: TinyLlama/TinyLlama-1.1B-Chat-v1.0
|
22 |
+
- **Fine-tuning Method**: LoRA (Low-Rank Adaptation)
|
23 |
+
- **Task**: E-commerce customer service conversation
|
24 |
+
- **Training Data**: ChatML formatted e-commerce conversations
|
25 |
+
|
26 |
+
## Usage
|
27 |
+
|
28 |
+
```python
|
29 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
30 |
+
from peft import PeftModel
|
31 |
+
|
32 |
+
# Load base model and tokenizer
|
33 |
+
base_model = AutoModelForCausalLM.from_pretrained("TinyLlama/TinyLlama-1.1B-Chat-v1.0")
|
34 |
+
tokenizer = AutoTokenizer.from_pretrained("ShenghaoYummy/TinyLlama-ECommerce-Chatbot")
|
35 |
+
|
36 |
+
# Load the fine-tuned model
|
37 |
+
model = PeftModel.from_pretrained(base_model, "ShenghaoYummy/TinyLlama-ECommerce-Chatbot")
|
38 |
+
|
39 |
+
# Generate response
|
40 |
+
def generate_response(prompt):
|
41 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
42 |
+
outputs = model.generate(**inputs, max_new_tokens=150, temperature=0.8)
|
43 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
44 |
+
|
45 |
+
# Example usage
|
46 |
+
prompt = "<|system|>\nYou are a helpful e-commerce assistant.<|im_end|>\n<|user|>\nWhat's your return policy?<|im_end|>\n<|assistant|>\n"
|
47 |
+
response = generate_response(prompt)
|
48 |
+
print(response)
|
49 |
+
```
|
50 |
+
|
51 |
+
## Training Details
|
52 |
+
|
53 |
+
This model was fine-tuned using:
|
54 |
+
- LoRA with rank 16
|
55 |
+
- Learning rate optimization via Optuna
|
56 |
+
- MLflow experiment tracking
|
57 |
+
- DVC pipeline management
|
58 |
+
|
59 |
+
## Limitations
|
60 |
+
|
61 |
+
- Optimized for e-commerce customer service scenarios
|
62 |
+
- May not perform well on general conversation topics
|
63 |
+
- Responses are based on training data patterns
|
64 |
+
|
65 |
+
## Citation
|
66 |
+
|
67 |
+
If you use this model, please cite: @misc{ecommerce-chatbot-tinyllama,
|
68 |
+
title={Fine-tuned TinyLlama for E-commerce Customer Service},
|
69 |
+
author={Your Name},
|
70 |
+
year={2024},
|
71 |
+
url={https://huggingface.co/ShenghaoYummy/TinyLlama-ECommerce-Chatbot}
|
72 |
+
}
|
adapter_config.json
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "TinyLlama/TinyLlama-1.1B-Chat-v1.0",
|
5 |
+
"bias": "none",
|
6 |
+
"corda_config": null,
|
7 |
+
"eva_config": null,
|
8 |
+
"exclude_modules": null,
|
9 |
+
"fan_in_fan_out": false,
|
10 |
+
"inference_mode": true,
|
11 |
+
"init_lora_weights": true,
|
12 |
+
"layer_replication": null,
|
13 |
+
"layers_pattern": null,
|
14 |
+
"layers_to_transform": null,
|
15 |
+
"loftq_config": {},
|
16 |
+
"lora_alpha": 32,
|
17 |
+
"lora_bias": false,
|
18 |
+
"lora_dropout": 0.05,
|
19 |
+
"megatron_config": null,
|
20 |
+
"megatron_core": "megatron.core",
|
21 |
+
"modules_to_save": null,
|
22 |
+
"peft_type": "LORA",
|
23 |
+
"r": 16,
|
24 |
+
"rank_pattern": {},
|
25 |
+
"revision": null,
|
26 |
+
"target_modules": [
|
27 |
+
"gate_proj",
|
28 |
+
"down_proj",
|
29 |
+
"k_proj",
|
30 |
+
"v_proj",
|
31 |
+
"q_proj",
|
32 |
+
"o_proj",
|
33 |
+
"up_proj"
|
34 |
+
],
|
35 |
+
"task_type": "CAUSAL_LM",
|
36 |
+
"trainable_token_indices": null,
|
37 |
+
"use_dora": false,
|
38 |
+
"use_rslora": false
|
39 |
+
}
|
adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c7ccc0cf0c164e64922658d934fd369c85cfdd49ad1db6a89170f4a0b967f80d
|
3 |
+
size 50503544
|
special_tokens_map.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "</s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "</s>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"unk_token": {
|
24 |
+
"content": "<unk>",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
}
|
30 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"add_prefix_space": null,
|
5 |
+
"added_tokens_decoder": {
|
6 |
+
"0": {
|
7 |
+
"content": "<unk>",
|
8 |
+
"lstrip": false,
|
9 |
+
"normalized": false,
|
10 |
+
"rstrip": false,
|
11 |
+
"single_word": false,
|
12 |
+
"special": true
|
13 |
+
},
|
14 |
+
"1": {
|
15 |
+
"content": "<s>",
|
16 |
+
"lstrip": false,
|
17 |
+
"normalized": false,
|
18 |
+
"rstrip": false,
|
19 |
+
"single_word": false,
|
20 |
+
"special": true
|
21 |
+
},
|
22 |
+
"2": {
|
23 |
+
"content": "</s>",
|
24 |
+
"lstrip": false,
|
25 |
+
"normalized": false,
|
26 |
+
"rstrip": false,
|
27 |
+
"single_word": false,
|
28 |
+
"special": true
|
29 |
+
}
|
30 |
+
},
|
31 |
+
"bos_token": "<s>",
|
32 |
+
"chat_template": "{% for message in messages %}\n{% if message['role'] == 'user' %}\n{{ '<|user|>\n' + message['content'] + eos_token }}\n{% elif message['role'] == 'system' %}\n{{ '<|system|>\n' + message['content'] + eos_token }}\n{% elif message['role'] == 'assistant' %}\n{{ '<|assistant|>\n' + message['content'] + eos_token }}\n{% endif %}\n{% if loop.last and add_generation_prompt %}\n{{ '<|assistant|>' }}\n{% endif %}\n{% endfor %}",
|
33 |
+
"clean_up_tokenization_spaces": false,
|
34 |
+
"eos_token": "</s>",
|
35 |
+
"extra_special_tokens": {},
|
36 |
+
"legacy": false,
|
37 |
+
"model_max_length": 2048,
|
38 |
+
"pad_token": "</s>",
|
39 |
+
"padding_side": "right",
|
40 |
+
"sp_model_kwargs": {},
|
41 |
+
"tokenizer_class": "LlamaTokenizer",
|
42 |
+
"unk_token": "<unk>",
|
43 |
+
"use_default_system_prompt": false
|
44 |
+
}
|