--- base_model: - timbrooks/instruct-pix2pix - SherryXTChen/Instruct-CLIP - SherryXTChen/LatentDiffusionDINOv2 datasets: - SherryXTChen/InstructCLIP-InstructPix2Pix-Data language: - en library_name: diffusers license: apache-2.0 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - diffusers-training - image-to-image inference: true pipeline_tag: image-to-image --- # InstructCLIP: Improving Instruction-Guided Image Editing with Automated Data Refinement Using Contrastive Learning The model is based on the paper [Instruct-CLIP: Improving Instruction-Guided Image Editing with Automated Data Refinement Using Contrastive Learning](https://huggingface.co/papers/2503.18406). GitHub: https://github.com/SherryXTChen/Instruct-CLIP.git ## Example ```python import PIL import requests import torch from diffusers import StableDiffusionInstructPix2PixPipeline, EulerAncestralDiscreteScheduler model_id = "timbrooks/instruct-pix2pix" pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained(model_id, torch_dtype=torch.float16) pipe.load_lora_weights("SherryXTChen/InstructCLIP-InstructPix2Pix") pipe.to("cuda") pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) url = "https://raw.githubusercontent.com/SherryXTChen/Instruct-CLIP/refs/heads/main/assets/1_input.jpg" def download_image(url): image = PIL.Image.open(requests.get(url, stream=True).raw) image = PIL.ImageOps.exif_transpose(image) image = image.convert("RGB") return image image = download_image(url) prompt = "as a 3 d sculpture" images = pipe(prompt, image=image, num_inference_steps=20).images images[0].save("output.jpg") ```