Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- config.json +1 -0
- ppo-HopperBulletEnv-v0.zip +3 -0
- ppo-HopperBulletEnv-v0/_stable_baselines3_version +1 -0
- ppo-HopperBulletEnv-v0/data +103 -0
- ppo-HopperBulletEnv-v0/policy.optimizer.pth +3 -0
- ppo-HopperBulletEnv-v0/policy.pth +3 -0
- ppo-HopperBulletEnv-v0/pytorch_variables.pth +3 -0
- ppo-HopperBulletEnv-v0/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- HopperBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: HopperBulletEnv-v0
|
16 |
+
type: HopperBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 70.43 +/- 3.91
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **HopperBulletEnv-v0**
|
25 |
+
This is a trained model of a **PPO** agent playing **HopperBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f47ecc73430>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f47ecc734c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f47ecc73550>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f47ecc735e0>", "_build": "<function ActorCriticPolicy._build at 0x7f47ecc73670>", "forward": "<function ActorCriticPolicy.forward at 0x7f47ecc73700>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f47ecc73790>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f47ecc73820>", "_predict": "<function ActorCriticPolicy._predict at 0x7f47ecc738b0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f47ecc73940>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f47ecc739d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f47ecc73a60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f47ecc748c0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWV5QEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLD4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWPAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UaApLD4WUjAFDlHSUUpSMBGhpZ2iUaBIoljwAAAAAAAAAAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgKSw+FlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWDwAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLD4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoIUsPhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [15], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 155648, "_total_timesteps": 155000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679448180247115745, "learning_rate": 0.001, "tensorboard_log": "value_loss", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVZQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbwAAAAAAAAAJV+Wz8AAAAAiQqpNWNLGD4AAAAANCNRPQAAAIBcqeI+53sgP19nUz7FQg8/zj96Pkcggb6F9+W+QBHvPvzyEsAAAAAAiQqpNddJm70AAAAAFNfRvwAAAABO+eW+VAIfP5sbXT4rsiPAd9Dov3+RvT9fawS+QBHvPipfaT4AAAAAiQqpNTbhDz8AAAAAmhHuPQAAAIC7r4o/UBiKP9VlXT7x5Kc9kY/wvuGLBz6f1ts+QBHvPnu53z4AAAAAiQqpNTMuPj8AAAAA5XqaPgAAAIChX0s/OPUeP2ArXT61TPo+BMACvJ7xs775DDU+QBHvPpSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLBEsPhpSMAUOUdJRSlC4="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVZQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbwAAAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAZp+HPwAAAAB0nIg/AAAAACx9370AAAAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACA7qyAPwAAAAAi3IE/AAAAAL47L7wAAAAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACA+eOBPwAAAAB/BW4/AAAAAFpB+b0AAAAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAoWGGPwAAAABj330/AAAAADeSDr0AAAAAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLBEsPhpSMAUOUdJRSlC4="}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004180645161290242, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQFToURnOB1+MAWyUS0WMAXSUR0Cl50d+5OJtdX2UKGgGR0BRzHyup0fYaAdLOmgIR0Cl50mcOLBLdX2UKGgGR0BQFw8r7O3VaAdLM2gIR0Cl51xRMvh7dX2UKGgGR0BUbUidJ8OTaAdLQmgIR0Cl52Y4Ia99dX2UKGgGR0BRT6X8fmtAaAdLN2gIR0Cl56/grH2idX2UKGgGR0BQtG/ag261aAdLNWgIR0Cl58Oc+aBqdX2UKGgGR0BVFOqJdjXnaAdLRWgIR0Cl58++mFajdX2UKGgGR0BRq5aePJaJaAdLOGgIR0Cl59PEsJ6ZdX2UKGgGR0BSTymuTzNEaAdLOmgIR0Cl6B6VMVUNdX2UKGgGR0BO9MbWEsasaAdLMWgIR0Cl6CnhCMP0dX2UKGgGR0BSh94iX6ZZaAdLPGgIR0Cl6DMTewcHdX2UKGgGR0BUNXnIQvpRaAdLQmgIR0Cl6Eyf+S8rdX2UKGgGR0BQ9JC8e0XxaAdLNmgIR0Cl6I4w7DEWdX2UKGgGR0BSt53os7MgaAdLPGgIR0Cl6I5YxL00dX2UKGgGR0BShwYHgP3BaAdLO2gIR0Cl6KHP/rB1dX2UKGgGR0BQ7JU1hsqKaAdLNmgIR0Cl6LJNbkfcdX2UKGgGR0BO+fEXLvCuaAdLMWgIR0Cl6OrcbiqAdX2UKGgGR0BSlrbHp8neaAdLO2gIR0Cl6P5NXYDldX2UKGgGR0BSyef7JnxsaAdLPGgIR0Cl6RM3AEdOdX2UKGgGR0BTh1DOTq0MaAdLPmgIR0Cl6Sgeq7yydX2UKGgGR0BQZ1jZtelbaAdLNGgIR0Cl6Uzl1bJPdX2UKGgGR0BKjQ+EAYHgaAdLK2gIR0Cl6WOuq3mWdX2UKGgGR0BOrh9kSVW0aAdLMGgIR0Cl6YEyULUkdX2UKGgGR0BV8uTRplBhaAdLSWgIR0Cl6Ybd8Aq/dX2UKGgGR0BQebX18LKFaAdLNWgIR0Cl6a9m6GxmdX2UKGgGR0BQZwPmPo3aaAdLNGgIR0Cl6cLoGIKudX2UKGgGR0BOg8Gs3hn8aAdLMmgIR0Cl6d06YE4edX2UKGgGR0BRlkzj3mFKaAdLOGgIR0Cl6e27nPmgdX2UKGgGR0BS6g8jiXIEaAdLPGgIR0Cl6hyLAHmjdX2UKGgGR0BSko6r/82raAdLO2gIR0Cl6i61LJ0XdX2UKGgGR0BTw7ULDye7aAdLP2gIR0Cl6k9CE6DHdX2UKGgGR0BVifGZNO/MaAdLR2gIR0Cl6m5rP+n7dX2UKGgGR0BR8ac/dIoWaAdLPGgIR0Cl6omICU5ddX2UKGgGR0BRf+k56t1ZaAdLOGgIR0Cl6pSu6mO3dX2UKGgGR0BUCeF6AvtdaAdLQmgIR0Cl6sig00m/dX2UKGgGR0BTFJ8KG+K1aAdLPWgIR0Cl6t5GSZBtdX2UKGgGR0BOTdTo+wC9aAdLMWgIR0Cl6u7BfrrxdX2UKGgGR0BTmPKp1ie/aAdLQmgIR0Cl6wLt/nW8dX2UKGgGR0BSE4A80UGnaAdLO2gIR0Cl6zUornTzdX2UKGgGR0BQplzU7Sy/aAdLNWgIR0Cl60ABkqc3dX2UKGgGR0BQwu1WsA/+aAdLNmgIR0Cl61KgyuZDdX2UKGgGR0BS0B28qWkaaAdLPGgIR0Cl63LCN0eVdX2UKGgGR0BR07cGkep5aAdLOWgIR0Cl654CIUJwdX2UKGgGR0BQvvLkjopyaAdLNWgIR0Cl66H0se4kdX2UKGgGR0BQcjy4FzMiaAdLNGgIR0Cl67KzzErHdX2UKGgGR0BSijC53C9AaAdLO2gIR0Cl6972lEZ0dX2UKGgGR0BN47ngYP5IaAdLL2gIR0Cl6/jkMkQgdX2UKGgGR0BSvRN/OMVDaAdLPGgIR0Cl7Ay6lLvkdX2UKGgGR0BSZDlDF6zFaAdLPWgIR0Cl7CL1dxACdX2UKGgGR0BUlwi7kGRnaAdLQ2gIR0Cl7FrvCuU2dX2UKGgGR0BSjzZQHiWFaAdLO2gIR0Cl7GaU7jkudX2UKGgGR0BVIBVENOM3aAdLRmgIR0Cl7JA44p+ddX2UKGgGR0BT5rt/nW8RaAdLQWgIR0Cl7J4CZF5OdX2UKGgGR0BRMJudf9gnaAdLN2gIR0Cl7MPDpC8fdX2UKGgGR0BSbv0NBnjAaAdLO2gIR0Cl7Nf51vETdX2UKGgGR0BRxikj5bhWaAdLOWgIR0Cl7QAgPmPpdX2UKGgGR0BTDuuA7PpqaAdLQGgIR0Cl7SE0SAYpdX2UKGgGR0BQ7ey3Td+HaAdLNmgIR0Cl7TbyYoiLdX2UKGgGR0BTgjmW+oLoaAdLQWgIR0Cl7V/NZ/0/dX2UKGgGR0BQbMJtzjm0aAdLNGgIR0Cl7W+sxO+JdX2UKGgGR0BSKVX/5tWNaAdLPGgIR0Cl7ZhsImgKdX2UKGgGR0BSgHQtz0YkaAdLO2gIR0Cl7ajSXt0FdX2UKGgGR0BMVIo/iYLLaAdLMGgIR0Cl7ccmShaldX2UKGgGR0BTXkHpr1ujaAdLQGgIR0Cl7de5nUUgdX2UKGgGR0BTK4NNJvpAaAdLPmgIR0Cl7ggDifg8dX2UKGgGR0BULXIIWxhVaAdLQGgIR0Cl7ht2LYPHdX2UKGgGR0BSa15rxiG4aAdLO2gIR0Cl7jEGzKLbdX2UKGgGR0BQlg/HHWBjaAdLNWgIR0Cl7jZeqrBCdX2UKGgGR0BSR7BO58SgaAdLOmgIR0Cl7nQQcxTLdX2UKGgGR0BSeR8UmD15aAdLO2gIR0Cl7oyrxRVIdX2UKGgGR0BQePlyR0U5aAdLNGgIR0Cl7pctXgccdX2UKGgGR0BTkoHs1KoRaAdLQWgIR0Cl7rdD6WPcdX2UKGgGR0BQNNRiw0O3aAdLM2gIR0Cl7tswco6TdX2UKGgGR0BSH7oW56MSaAdLPGgIR0Cl7wNG3F1kdX2UKGgGR0BTJ+Zb6guiaAdLPWgIR0Cl7w6cqe9SdX2UKGgGR0BRXVYU34sVaAdLN2gIR0Cl7yGecx0udX2UKGgGR0BRSWj0th/iaAdLOWgIR0Cl70gFotcwdX2UKGgGR0BQWKE384xUaAdLNGgIR0Cl72m1YyO8dX2UKGgGR0BTATBZZB9kaAdLPmgIR0Cl75ARsdkrdX2UKGgGR0BPTJjlPrOaaAdLNGgIR0Cl75B0hePadX2UKGgGR0BOkCRGMGX5aAdLMGgIR0Cl77K7I1cddX2UKGgGR0BLwL8BMi8naAdLLGgIR0Cl7+zHCGeudX2UKGgGR0BTQHjABT4taAdLPWgIR0Cl7+7vPToddX2UKGgGR0BUXj/ZM+NcaAdLQ2gIR0Cl8B4Dklu4dX2UKGgGR0BVJlvAGjbjaAdLRmgIR0Cl8ENLlFMJdX2UKGgGR0BOGLUCq6vraAdLL2gIR0Cl8E79AHE/dX2UKGgGR0BPKIl+mWMTaAdLMWgIR0Cl8FFDneSCdX2UKGgGR0BLEOqm0mdBaAdLLmgIR0Cl8HdvS+g2dX2UKGgGR0BNUoBBAv+PaAdLL2gIR0Cl8J6Ogg5jdX2UKGgGR0BS8HfVI7NjaAdLPmgIR0Cl8MYpDu0DdX2UKGgGR0BTSGC2+fyxaAdLPmgIR0Cl8MhVU+9rdX2UKGgGR0BRn2GM4tHyaAdLOGgIR0Cl8ONPP9k0dX2UKGgGR0BUgEJv5xioaAdLRGgIR0Cl8R+GXXyzdX2UKGgGR0BRUwm3OObRaAdLN2gIR0Cl8TCr92ovdX2UKGgGR0BR47RKHwgDaAdLOmgIR0Cl8TSLZSNwdX2UKGgGR0BVVYoJAt4BaAdLRmgIR0Cl8WeuV5bAdX2UKGgGR0BSs3T/hl19aAdLPGgIR0Cl8ZAPd2xIdX2UKGgGR0BP6a+evpyIaAdLNWgIR0Cl8ZPZAY51dX2UKGgGR0BVVwxJul41aAdLRmgIR0Cl8bYS6DoRdX2UKGgGR0BTIRL5AQg+aAdLPWgIR0Cl8daKDTScdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 190, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEdALgAAAAAAAIWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
ppo-HopperBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0e95bf10662cd7ba910a4580670597a2833187c32ec985ab494b9596aa37bb11
|
3 |
+
size 157950
|
ppo-HopperBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
ppo-HopperBulletEnv-v0/data
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f47ecc73430>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f47ecc734c0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f47ecc73550>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f47ecc735e0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f47ecc73670>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f47ecc73700>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f47ecc73790>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f47ecc73820>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f47ecc738b0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f47ecc73940>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f47ecc739d0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f47ecc73a60>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f47ecc748c0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWV5QEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLD4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWPAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UaApLD4WUjAFDlHSUUpSMBGhpZ2iUaBIoljwAAAAAAAAAAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgKSw+FlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWDwAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLD4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoIUsPhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
27 |
+
"dtype": "float32",
|
28 |
+
"_shape": [
|
29 |
+
15
|
30 |
+
],
|
31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf]",
|
32 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf]",
|
33 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False]",
|
34 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
39 |
+
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
40 |
+
"dtype": "float32",
|
41 |
+
"_shape": [
|
42 |
+
3
|
43 |
+
],
|
44 |
+
"low": "[-1. -1. -1.]",
|
45 |
+
"high": "[1. 1. 1.]",
|
46 |
+
"bounded_below": "[ True True True]",
|
47 |
+
"bounded_above": "[ True True True]",
|
48 |
+
"_np_random": null
|
49 |
+
},
|
50 |
+
"n_envs": 4,
|
51 |
+
"num_timesteps": 155648,
|
52 |
+
"_total_timesteps": 155000,
|
53 |
+
"_num_timesteps_at_start": 0,
|
54 |
+
"seed": null,
|
55 |
+
"action_noise": null,
|
56 |
+
"start_time": 1679448180247115745,
|
57 |
+
"learning_rate": 0.001,
|
58 |
+
"tensorboard_log": "value_loss",
|
59 |
+
"lr_schedule": {
|
60 |
+
":type:": "<class 'function'>",
|
61 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
62 |
+
},
|
63 |
+
"_last_obs": {
|
64 |
+
":type:": "<class 'numpy.ndarray'>",
|
65 |
+
":serialized:": "gAWVZQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbwAAAAAAAAAJV+Wz8AAAAAiQqpNWNLGD4AAAAANCNRPQAAAIBcqeI+53sgP19nUz7FQg8/zj96Pkcggb6F9+W+QBHvPvzyEsAAAAAAiQqpNddJm70AAAAAFNfRvwAAAABO+eW+VAIfP5sbXT4rsiPAd9Dov3+RvT9fawS+QBHvPipfaT4AAAAAiQqpNTbhDz8AAAAAmhHuPQAAAIC7r4o/UBiKP9VlXT7x5Kc9kY/wvuGLBz6f1ts+QBHvPnu53z4AAAAAiQqpNTMuPj8AAAAA5XqaPgAAAIChX0s/OPUeP2ArXT61TPo+BMACvJ7xs775DDU+QBHvPpSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLBEsPhpSMAUOUdJRSlC4="
|
66 |
+
},
|
67 |
+
"_last_episode_starts": {
|
68 |
+
":type:": "<class 'numpy.ndarray'>",
|
69 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
70 |
+
},
|
71 |
+
"_last_original_obs": {
|
72 |
+
":type:": "<class 'numpy.ndarray'>",
|
73 |
+
":serialized:": "gAWVZQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbwAAAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAZp+HPwAAAAB0nIg/AAAAACx9370AAAAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACA7qyAPwAAAAAi3IE/AAAAAL47L7wAAAAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACA+eOBPwAAAAB/BW4/AAAAAFpB+b0AAAAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAoWGGPwAAAABj330/AAAAADeSDr0AAAAAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLBEsPhpSMAUOUdJRSlC4="
|
74 |
+
},
|
75 |
+
"_episode_num": 0,
|
76 |
+
"use_sde": false,
|
77 |
+
"sde_sample_freq": -1,
|
78 |
+
"_current_progress_remaining": -0.004180645161290242,
|
79 |
+
"ep_info_buffer": {
|
80 |
+
":type:": "<class 'collections.deque'>",
|
81 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQFToURnOB1+MAWyUS0WMAXSUR0Cl50d+5OJtdX2UKGgGR0BRzHyup0fYaAdLOmgIR0Cl50mcOLBLdX2UKGgGR0BQFw8r7O3VaAdLM2gIR0Cl51xRMvh7dX2UKGgGR0BUbUidJ8OTaAdLQmgIR0Cl52Y4Ia99dX2UKGgGR0BRT6X8fmtAaAdLN2gIR0Cl56/grH2idX2UKGgGR0BQtG/ag261aAdLNWgIR0Cl58Oc+aBqdX2UKGgGR0BVFOqJdjXnaAdLRWgIR0Cl58++mFajdX2UKGgGR0BRq5aePJaJaAdLOGgIR0Cl59PEsJ6ZdX2UKGgGR0BSTymuTzNEaAdLOmgIR0Cl6B6VMVUNdX2UKGgGR0BO9MbWEsasaAdLMWgIR0Cl6CnhCMP0dX2UKGgGR0BSh94iX6ZZaAdLPGgIR0Cl6DMTewcHdX2UKGgGR0BUNXnIQvpRaAdLQmgIR0Cl6Eyf+S8rdX2UKGgGR0BQ9JC8e0XxaAdLNmgIR0Cl6I4w7DEWdX2UKGgGR0BSt53os7MgaAdLPGgIR0Cl6I5YxL00dX2UKGgGR0BShwYHgP3BaAdLO2gIR0Cl6KHP/rB1dX2UKGgGR0BQ7JU1hsqKaAdLNmgIR0Cl6LJNbkfcdX2UKGgGR0BO+fEXLvCuaAdLMWgIR0Cl6OrcbiqAdX2UKGgGR0BSlrbHp8neaAdLO2gIR0Cl6P5NXYDldX2UKGgGR0BSyef7JnxsaAdLPGgIR0Cl6RM3AEdOdX2UKGgGR0BTh1DOTq0MaAdLPmgIR0Cl6Sgeq7yydX2UKGgGR0BQZ1jZtelbaAdLNGgIR0Cl6Uzl1bJPdX2UKGgGR0BKjQ+EAYHgaAdLK2gIR0Cl6WOuq3mWdX2UKGgGR0BOrh9kSVW0aAdLMGgIR0Cl6YEyULUkdX2UKGgGR0BV8uTRplBhaAdLSWgIR0Cl6Ybd8Aq/dX2UKGgGR0BQebX18LKFaAdLNWgIR0Cl6a9m6GxmdX2UKGgGR0BQZwPmPo3aaAdLNGgIR0Cl6cLoGIKudX2UKGgGR0BOg8Gs3hn8aAdLMmgIR0Cl6d06YE4edX2UKGgGR0BRlkzj3mFKaAdLOGgIR0Cl6e27nPmgdX2UKGgGR0BS6g8jiXIEaAdLPGgIR0Cl6hyLAHmjdX2UKGgGR0BSko6r/82raAdLO2gIR0Cl6i61LJ0XdX2UKGgGR0BTw7ULDye7aAdLP2gIR0Cl6k9CE6DHdX2UKGgGR0BVifGZNO/MaAdLR2gIR0Cl6m5rP+n7dX2UKGgGR0BR8ac/dIoWaAdLPGgIR0Cl6omICU5ddX2UKGgGR0BRf+k56t1ZaAdLOGgIR0Cl6pSu6mO3dX2UKGgGR0BUCeF6AvtdaAdLQmgIR0Cl6sig00m/dX2UKGgGR0BTFJ8KG+K1aAdLPWgIR0Cl6t5GSZBtdX2UKGgGR0BOTdTo+wC9aAdLMWgIR0Cl6u7BfrrxdX2UKGgGR0BTmPKp1ie/aAdLQmgIR0Cl6wLt/nW8dX2UKGgGR0BSE4A80UGnaAdLO2gIR0Cl6zUornTzdX2UKGgGR0BQplzU7Sy/aAdLNWgIR0Cl60ABkqc3dX2UKGgGR0BQwu1WsA/+aAdLNmgIR0Cl61KgyuZDdX2UKGgGR0BS0B28qWkaaAdLPGgIR0Cl63LCN0eVdX2UKGgGR0BR07cGkep5aAdLOWgIR0Cl654CIUJwdX2UKGgGR0BQvvLkjopyaAdLNWgIR0Cl66H0se4kdX2UKGgGR0BQcjy4FzMiaAdLNGgIR0Cl67KzzErHdX2UKGgGR0BSijC53C9AaAdLO2gIR0Cl6972lEZ0dX2UKGgGR0BN47ngYP5IaAdLL2gIR0Cl6/jkMkQgdX2UKGgGR0BSvRN/OMVDaAdLPGgIR0Cl7Ay6lLvkdX2UKGgGR0BSZDlDF6zFaAdLPWgIR0Cl7CL1dxACdX2UKGgGR0BUlwi7kGRnaAdLQ2gIR0Cl7FrvCuU2dX2UKGgGR0BSjzZQHiWFaAdLO2gIR0Cl7GaU7jkudX2UKGgGR0BVIBVENOM3aAdLRmgIR0Cl7JA44p+ddX2UKGgGR0BT5rt/nW8RaAdLQWgIR0Cl7J4CZF5OdX2UKGgGR0BRMJudf9gnaAdLN2gIR0Cl7MPDpC8fdX2UKGgGR0BSbv0NBnjAaAdLO2gIR0Cl7Nf51vETdX2UKGgGR0BRxikj5bhWaAdLOWgIR0Cl7QAgPmPpdX2UKGgGR0BTDuuA7PpqaAdLQGgIR0Cl7SE0SAYpdX2UKGgGR0BQ7ey3Td+HaAdLNmgIR0Cl7TbyYoiLdX2UKGgGR0BTgjmW+oLoaAdLQWgIR0Cl7V/NZ/0/dX2UKGgGR0BQbMJtzjm0aAdLNGgIR0Cl7W+sxO+JdX2UKGgGR0BSKVX/5tWNaAdLPGgIR0Cl7ZhsImgKdX2UKGgGR0BSgHQtz0YkaAdLO2gIR0Cl7ajSXt0FdX2UKGgGR0BMVIo/iYLLaAdLMGgIR0Cl7ccmShaldX2UKGgGR0BTXkHpr1ujaAdLQGgIR0Cl7de5nUUgdX2UKGgGR0BTK4NNJvpAaAdLPmgIR0Cl7ggDifg8dX2UKGgGR0BULXIIWxhVaAdLQGgIR0Cl7ht2LYPHdX2UKGgGR0BSa15rxiG4aAdLO2gIR0Cl7jEGzKLbdX2UKGgGR0BQlg/HHWBjaAdLNWgIR0Cl7jZeqrBCdX2UKGgGR0BSR7BO58SgaAdLOmgIR0Cl7nQQcxTLdX2UKGgGR0BSeR8UmD15aAdLO2gIR0Cl7oyrxRVIdX2UKGgGR0BQePlyR0U5aAdLNGgIR0Cl7pctXgccdX2UKGgGR0BTkoHs1KoRaAdLQWgIR0Cl7rdD6WPcdX2UKGgGR0BQNNRiw0O3aAdLM2gIR0Cl7tswco6TdX2UKGgGR0BSH7oW56MSaAdLPGgIR0Cl7wNG3F1kdX2UKGgGR0BTJ+Zb6guiaAdLPWgIR0Cl7w6cqe9SdX2UKGgGR0BRXVYU34sVaAdLN2gIR0Cl7yGecx0udX2UKGgGR0BRSWj0th/iaAdLOWgIR0Cl70gFotcwdX2UKGgGR0BQWKE384xUaAdLNGgIR0Cl72m1YyO8dX2UKGgGR0BTATBZZB9kaAdLPmgIR0Cl75ARsdkrdX2UKGgGR0BPTJjlPrOaaAdLNGgIR0Cl75B0hePadX2UKGgGR0BOkCRGMGX5aAdLMGgIR0Cl77K7I1cddX2UKGgGR0BLwL8BMi8naAdLLGgIR0Cl7+zHCGeudX2UKGgGR0BTQHjABT4taAdLPWgIR0Cl7+7vPToddX2UKGgGR0BUXj/ZM+NcaAdLQ2gIR0Cl8B4Dklu4dX2UKGgGR0BVJlvAGjbjaAdLRmgIR0Cl8ENLlFMJdX2UKGgGR0BOGLUCq6vraAdLL2gIR0Cl8E79AHE/dX2UKGgGR0BPKIl+mWMTaAdLMWgIR0Cl8FFDneSCdX2UKGgGR0BLEOqm0mdBaAdLLmgIR0Cl8HdvS+g2dX2UKGgGR0BNUoBBAv+PaAdLL2gIR0Cl8J6Ogg5jdX2UKGgGR0BS8HfVI7NjaAdLPmgIR0Cl8MYpDu0DdX2UKGgGR0BTSGC2+fyxaAdLPmgIR0Cl8MhVU+9rdX2UKGgGR0BRn2GM4tHyaAdLOGgIR0Cl8ONPP9k0dX2UKGgGR0BUgEJv5xioaAdLRGgIR0Cl8R+GXXyzdX2UKGgGR0BRUwm3OObRaAdLN2gIR0Cl8TCr92ovdX2UKGgGR0BR47RKHwgDaAdLOmgIR0Cl8TSLZSNwdX2UKGgGR0BVVYoJAt4BaAdLRmgIR0Cl8WeuV5bAdX2UKGgGR0BSs3T/hl19aAdLPGgIR0Cl8ZAPd2xIdX2UKGgGR0BP6a+evpyIaAdLNWgIR0Cl8ZPZAY51dX2UKGgGR0BVVwxJul41aAdLRmgIR0Cl8bYS6DoRdX2UKGgGR0BTIRL5AQg+aAdLPWgIR0Cl8daKDTScdWUu"
|
82 |
+
},
|
83 |
+
"ep_success_buffer": {
|
84 |
+
":type:": "<class 'collections.deque'>",
|
85 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
86 |
+
},
|
87 |
+
"_n_updates": 190,
|
88 |
+
"n_steps": 2048,
|
89 |
+
"gamma": 0.99,
|
90 |
+
"gae_lambda": 0.95,
|
91 |
+
"ent_coef": 0.0,
|
92 |
+
"vf_coef": 0.5,
|
93 |
+
"max_grad_norm": 0.5,
|
94 |
+
"batch_size": 64,
|
95 |
+
"n_epochs": 10,
|
96 |
+
"clip_range": {
|
97 |
+
":type:": "<class 'function'>",
|
98 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEdALgAAAAAAAIWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
99 |
+
},
|
100 |
+
"clip_range_vf": null,
|
101 |
+
"normalize_advantage": true,
|
102 |
+
"target_kl": null
|
103 |
+
}
|
ppo-HopperBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:850b298a3223fce023fe2b63acd99d598c933d035c15df0e383079cc5da5c53c
|
3 |
+
size 95472
|
ppo-HopperBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:69969d77233842c9b1128e92b20748fad439e13dbe7eea5ebddb879533b978d8
|
3 |
+
size 47038
|
ppo-HopperBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-HopperBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c1d4077a48fe834bb6638eef4fa583a453df895d827817dbb2148a1b4a6d2e14
|
3 |
+
size 1072186
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 70.42625467777252, "std_reward": 3.9145649187331344, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-22T01:27:18.577015"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7b10d8bd8147d1e7d3767904393219b569873093171605cb707475830a7e3a00
|
3 |
+
size 1696
|