Sid26Roy commited on
Commit
c853db8
·
verified ·
1 Parent(s): 405b181

Upload stream.py

Browse files
Files changed (1) hide show
  1. stream.py +30 -0
stream.py ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from transformers import BertTokenizer, BertForSequenceClassification
3
+ import torch
4
+
5
+ # Load the model and tokenizer from Hugging Face
6
+ @st.cache_resource(allow_output_mutation=True)
7
+ def load_model():
8
+ model = BertForSequenceClassification.from_pretrained("your-huggingface-username/your-model-repo")
9
+ tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
10
+ return model, tokenizer
11
+
12
+ model, tokenizer = load_model()
13
+
14
+ # Define Streamlit app layout
15
+ st.title("AI vs Human Text Classifier")
16
+
17
+ user_input = st.text_area("Enter the text to classify:")
18
+
19
+ if st.button("Classify"):
20
+ # Preprocess the input text
21
+ inputs = tokenizer(user_input, return_tensors="pt", max_length=256, padding="max_length", truncation=True)
22
+ with torch.no_grad():
23
+ outputs = model(**inputs)
24
+
25
+ # Get prediction
26
+ prediction = torch.argmax(outputs.logits, dim=1).item()
27
+
28
+ # Convert prediction to human-readable label
29
+ label_mapping = {0: "Human-written", 1: "AI-generated"}
30
+ st.write(f"The text is classified as: {label_mapping[prediction]}")