Update Sniffer_AI(GPS Tracker Dataset).py
Browse files
Sniffer_AI(GPS Tracker Dataset).py
CHANGED
@@ -8,12 +8,12 @@ import tempfile
|
|
8 |
# Set a custom directory for Gradio's temporary files
|
9 |
os.environ["GRADIO_TEMP"] = tempfile.mkdtemp()
|
10 |
|
11 |
-
# Load the
|
12 |
-
|
13 |
|
14 |
# Define required numeric features
|
15 |
numeric_features = [
|
16 |
-
"date_numeric", "time_numeric", "
|
17 |
]
|
18 |
|
19 |
# Class labels for attack types
|
@@ -31,18 +31,20 @@ class_labels = {
|
|
31 |
def convert_datetime_features(log_data):
|
32 |
"""Convert date and time into numeric values."""
|
33 |
try:
|
34 |
-
log_data['date'] = pd.to_datetime(log_data['date'], format='%d-%
|
35 |
-
log_data['date_numeric'] = log_data['date'].astype(np.int64) // 10**9
|
36 |
|
37 |
time_parsed = pd.to_datetime(log_data['time'], format='%H:%M:%S', errors='coerce')
|
38 |
-
log_data['time_numeric'] = (
|
|
|
|
|
39 |
except Exception as e:
|
40 |
return f"Error processing date/time: {str(e)}"
|
41 |
-
|
42 |
return log_data
|
43 |
|
44 |
def detect_intrusion(file):
|
45 |
-
"""Process log file and predict attack type."""
|
46 |
try:
|
47 |
log_data = pd.read_csv(file.name)
|
48 |
except Exception as e:
|
@@ -55,11 +57,8 @@ def detect_intrusion(file):
|
|
55 |
return f"Missing features in file: {', '.join(missing_features)}"
|
56 |
|
57 |
try:
|
58 |
-
log_data['door_state'] = log_data['door_state'].astype(str).str.strip().replace({'closed': 0, 'open': 1})
|
59 |
-
log_data['sphone_signal'] = pd.to_numeric(log_data['sphone_signal'], errors='coerce')
|
60 |
-
|
61 |
feature_values = log_data[numeric_features].astype(float).values
|
62 |
-
predictions =
|
63 |
except Exception as e:
|
64 |
return f"Error during prediction: {str(e)}"
|
65 |
|
@@ -70,10 +69,10 @@ def detect_intrusion(file):
|
|
70 |
log_data['date'] = log_data['date'].dt.strftime('%Y-%m-%d')
|
71 |
|
72 |
# Select final output columns
|
73 |
-
output_df = log_data[['date', 'time', 'Prediction']]
|
74 |
|
75 |
# Save the output to a CSV file for download
|
76 |
-
output_file = "
|
77 |
output_df.to_csv(output_file, index=False)
|
78 |
|
79 |
return output_df, output_file
|
@@ -81,15 +80,18 @@ def detect_intrusion(file):
|
|
81 |
# Create Gradio interface
|
82 |
iface = gr.Interface(
|
83 |
fn=detect_intrusion,
|
84 |
-
inputs=[gr.File(label="Upload Log File (CSV format)")],
|
85 |
-
outputs=[
|
86 |
-
|
|
|
|
|
|
|
87 |
description=(
|
88 |
"""
|
89 |
-
Upload a
|
90 |
-
date,time,
|
91 |
Example:
|
92 |
-
|
93 |
"""
|
94 |
)
|
95 |
)
|
|
|
8 |
# Set a custom directory for Gradio's temporary files
|
9 |
os.environ["GRADIO_TEMP"] = tempfile.mkdtemp()
|
10 |
|
11 |
+
# Load the trained Decision Tree model
|
12 |
+
decision_tree_model = joblib.load('decision_tree_model.pkl') # Update path if necessary
|
13 |
|
14 |
# Define required numeric features
|
15 |
numeric_features = [
|
16 |
+
"date_numeric", "time_numeric", "latitude", "longitude", "label"
|
17 |
]
|
18 |
|
19 |
# Class labels for attack types
|
|
|
31 |
def convert_datetime_features(log_data):
|
32 |
"""Convert date and time into numeric values."""
|
33 |
try:
|
34 |
+
log_data['date'] = pd.to_datetime(log_data['date'], format='%d-%b-%y', errors='coerce')
|
35 |
+
log_data['date_numeric'] = log_data['date'].astype(np.int64) // 10**9
|
36 |
|
37 |
time_parsed = pd.to_datetime(log_data['time'], format='%H:%M:%S', errors='coerce')
|
38 |
+
log_data['time_numeric'] = (
|
39 |
+
time_parsed.dt.hour * 3600 + time_parsed.dt.minute * 60 + time_parsed.dt.second
|
40 |
+
)
|
41 |
except Exception as e:
|
42 |
return f"Error processing date/time: {str(e)}"
|
43 |
+
|
44 |
return log_data
|
45 |
|
46 |
def detect_intrusion(file):
|
47 |
+
"""Process GPS tracker log file and predict attack type."""
|
48 |
try:
|
49 |
log_data = pd.read_csv(file.name)
|
50 |
except Exception as e:
|
|
|
57 |
return f"Missing features in file: {', '.join(missing_features)}"
|
58 |
|
59 |
try:
|
|
|
|
|
|
|
60 |
feature_values = log_data[numeric_features].astype(float).values
|
61 |
+
predictions = model.predict(feature_values)
|
62 |
except Exception as e:
|
63 |
return f"Error during prediction: {str(e)}"
|
64 |
|
|
|
69 |
log_data['date'] = log_data['date'].dt.strftime('%Y-%m-%d')
|
70 |
|
71 |
# Select final output columns
|
72 |
+
output_df = log_data[['date', 'time', 'latitude', 'longitude', 'Prediction']]
|
73 |
|
74 |
# Save the output to a CSV file for download
|
75 |
+
output_file = "gps_intrusion_results.csv"
|
76 |
output_df.to_csv(output_file, index=False)
|
77 |
|
78 |
return output_df, output_file
|
|
|
80 |
# Create Gradio interface
|
81 |
iface = gr.Interface(
|
82 |
fn=detect_intrusion,
|
83 |
+
inputs=[gr.File(label="Upload GPS Tracker Log File (CSV format)")],
|
84 |
+
outputs=[
|
85 |
+
gr.Dataframe(label="Intrusion Detection Results"),
|
86 |
+
gr.File(label="Download Predictions CSV")
|
87 |
+
],
|
88 |
+
title="GPS Tracker Intrusion Detection System",
|
89 |
description=(
|
90 |
"""
|
91 |
+
Upload a GPS log file with the following features:
|
92 |
+
date,time,latitude,longitude,label,type
|
93 |
Example:
|
94 |
+
25-Apr-19,18:31:39,116.521704,132.162504,1,ddos
|
95 |
"""
|
96 |
)
|
97 |
)
|