SilverDragon9 commited on
Commit
827f213
·
verified ·
1 Parent(s): 8512991

Update Sniffer_AI.py

Browse files
Files changed (1) hide show
  1. Sniffer_AI.py +71 -41
Sniffer_AI.py CHANGED
@@ -1,69 +1,99 @@
1
- import gradio as gr
 
2
  import joblib
3
- import requests
4
  import os
 
5
 
6
- from sklearn.ensemble import RandomForestClassifier
 
7
 
8
- # Load the saved models
9
- rf_model = joblib.load('rf_model.pkl')
10
 
11
- # Define the feature names (excluding the target column 'type')
12
- feature_names = [
13
- "date", "time", "door_state", "sphone_signal", "label"
 
14
  ]
15
 
 
16
  class_labels = {
17
- 0: "normal",
18
- 1: "backdoor",
19
- 2: "ddos",
20
- 3: "injection",
21
- 4: "password",
22
- 5: "ransomware",
23
- 6: "scanning",
24
- 7: "xss",
25
  }
26
 
27
- # Placeholder model (replace with actual Random Forest model object)
28
- rf_model = None # Load the actual trained Random Forest model here
 
 
 
 
 
 
 
 
 
 
 
29
 
30
  def detect_intrusion(file):
31
- # Read the uploaded log file as a CSV or structured data
32
  try:
33
- log_data = pd.read_csv(file.name) # Use file.name to get the path for reading
34
  except Exception as e:
35
  return f"Error reading file: {str(e)}"
36
 
37
- # Check if all required feature columns are in the log file
38
- missing_features = [feature for feature in feature_names if feature not in log_data.columns]
 
39
  if missing_features:
40
  return f"Missing features in file: {', '.join(missing_features)}"
41
-
42
- # Extract the feature values (excluding the 'type' column which is the target)
43
- feature_values = log_data[feature_names].astype(float).values
44
 
45
- # Predict the class (multi-class classification) for each row in the log file
46
- predictions = rf_model.predict(feature_values)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47
 
48
- # Return only the 'Prediction' and 'label' columns
49
- return log_data[['Prediction']].head().to_string()
50
 
51
- # Create a Gradio interface
52
  iface = gr.Interface(
53
  fn=detect_intrusion,
54
- inputs=[
55
- gr.File(label="Upload Log File (CSV format)") # File input
56
- ],
57
- outputs="text",
58
  title="Intrusion Detection System",
59
- description=("""
60
- Upload a CSV log file containing the following features:
61
- date, time, door_state, sphone_signal, label (without the 'type' column).
62
- Example file structure:
63
  date,time,door_state,sphone_signal,label
64
- 2025-03-12,10:45:00,1,-85,normal
65
- """)
 
 
66
  )
67
 
68
- # Launch the interface locally for testing
69
  iface.launch()
 
1
+ import pandas as pd
2
+ import numpy as np
3
  import joblib
4
+ import gradio as gr
5
  import os
6
+ import tempfile
7
 
8
+ # Set a custom directory for Gradio's temporary files
9
+ os.environ["GRADIO_TEMP"] = tempfile.mkdtemp()
10
 
11
+ # Load the saved Random Forest model
12
+ rf_model = joblib.load('rf_model.pkl') # Ensure the correct model path
13
 
14
+ # Define required numeric features
15
+ numeric_features = [
16
+ "date_numeric", "total_minutes", "seconds",
17
+ "door_state", "sphone_signal", "label"
18
  ]
19
 
20
+ # Class labels for attack types
21
  class_labels = {
22
+ 0: "Normal",
23
+ 1: "Backdoor",
24
+ 2: "DDoS",
25
+ 3: "Injection",
26
+ 4: "Password Attack",
27
+ 5: "Ransomware",
28
+ 6: "Scanning",
29
+ 7: "XSS",
30
  }
31
 
32
+ def convert_datetime_features(log_data):
33
+ """Convert date and time into numeric values."""
34
+ try:
35
+ log_data['date'] = pd.to_datetime(log_data['date'], format='%d-%m-%y', errors='coerce')
36
+ log_data['date_numeric'] = log_data['date'].astype(np.int64) // 10**9
37
+
38
+ time_parsed = pd.to_datetime(log_data['time'], format='%H:%M:%S', errors='coerce')
39
+ log_data['total_minutes'] = (time_parsed.dt.hour * 60) + time_parsed.dt.minute
40
+ log_data['seconds'] = time_parsed.dt.second
41
+ except Exception as e:
42
+ return f"Error processing date/time: {str(e)}"
43
+
44
+ return log_data
45
 
46
  def detect_intrusion(file):
47
+ """Process log file and predict attack type."""
48
  try:
49
+ log_data = pd.read_csv(file.name)
50
  except Exception as e:
51
  return f"Error reading file: {str(e)}"
52
 
53
+ log_data = convert_datetime_features(log_data)
54
+
55
+ missing_features = [feature for feature in numeric_features if feature not in log_data.columns]
56
  if missing_features:
57
  return f"Missing features in file: {', '.join(missing_features)}"
 
 
 
58
 
59
+ try:
60
+ log_data['door_state'] = log_data['door_state'].astype(str).str.strip().replace({'closed': 0, 'open': 1})
61
+ log_data['sphone_signal'] = pd.to_numeric(log_data['sphone_signal'], errors='coerce')
62
+
63
+ feature_values = log_data[numeric_features].astype(float).values
64
+ predictions = rf_model.predict(feature_values)
65
+ except Exception as e:
66
+ return f"Error during prediction: {str(e)}"
67
+
68
+ # Map predictions to specific attack types
69
+ log_data['Prediction'] = [class_labels.get(pred, 'Unknown Attack') for pred in predictions]
70
+
71
+ # Format date for output
72
+ log_data['date'] = log_data['date'].dt.strftime('%Y-%m-%d')
73
+
74
+ # Select final output columns
75
+ output_df = log_data[['date', 'time', 'Prediction']]
76
+
77
+ # Save the output to a CSV file for download
78
+ output_file = "intrusion_results.csv"
79
+ output_df.to_csv(output_file, index=False)
80
 
81
+ return output_df, output_file
 
82
 
83
+ # Create Gradio interface
84
  iface = gr.Interface(
85
  fn=detect_intrusion,
86
+ inputs=[gr.File(label="Upload Log File (CSV format)")],
87
+ outputs=[gr.Dataframe(label="Intrusion Detection Results"), gr.File(label="Download Predictions CSV")],
 
 
88
  title="Intrusion Detection System",
89
+ description=(
90
+ """
91
+ Upload a CSV log file with the following features:
 
92
  date,time,door_state,sphone_signal,label
93
+ Example:
94
+ 26-04-19,13:59:20,1,-85,normal
95
+ """
96
+ )
97
  )
98
 
 
99
  iface.launch()